STORMWATER POLLUTION PREVENTION PLAN

FOR

DONNELLY - SUGARLOAF

1355 KINGS HIGHWAY

TOWN OF CHESTER ORANGE COUNTY, NEW YORK

JANUARY 2022

KU

© Engineering & Surveying Properties, PC 2022

TABLE OF CONTENTS

SECT	ION	PAGE
1.0	INTRODUCTION	3
1.1	PURPOSE	3
1.2	SCOPE	3
2.0	PROJECT DESCRIPTION	3
3.0	TOPOGRAPHY AND SOILS	4
4.0	METHODOLOGY	4
5.0	STORMWATER MANAGEMENT PLANNING	5
5.1	INITIAL SITE PLANNING	5
5	1.1 EXISTING CONDITIONS	6
5	1.2 PROPOSED CONDITIONS	7
5.2	WATER QUALITY VOLUME	8
5.3	RUNOFF REDUCTION VOLUME	8
5.4	APPLICATION OF STANDARD SMP'S FOR THE REVISED WQ_V	11
5.5	VOLUME AND PEAK RATE CONTROL	12
5	5.1 CHANNEL PROTECTION VOLUME	12
5	5.2 PEAK RATE CONTROL	12
5.6	SOIL RESTORATION	13
6.0	EROSION AND SEDIMENT CONTROL MEASURES	15
7.0	LONG TERM MAINTENANCE OF WATER QUALITY FEATURES	17
8.0	SUMMARY OF FINDINGS AND CONCLUSIONS	18

TABLES

TABLE 1: EXISTING DRAINAGE AREA CHARACTERISTICS	7
TABLE 2: PROPOSED DRAINAGE AREA CHARACTERISTICS	7
TABLE 3: REQUIRED WATER QUALITY VOLUMES	8
TABLE 4: SPECIFIC REDUCTION FACTOR (S)*	. 11
TABLE 5: RUNOFF REDUCTION VOLUMES & REVISED WQV	. 11
TABLE 6: CALCULATED CHANNEL PROTECTION VOLUMES (CPV)	. 12
TABLE 7: SUMMARY OF RESULTS AT THE DESIGN POINTS	. 13
TABLE 8: SOIL RESTORATION REQUIREMENTS	. 14

APPENDICES

- APPENDIX 1: FIGURES
- APPENDIX 2: SOILS MAP AND CLASSIFICATIONS, SOILS TESTING RESULTS & RAINFALL DATA
- APPENDIX 3: CURVE NUMBER CALCULATIONS
- APPENDIX 4: TIME OF CONCENTRATION CALCULATIONS
- APPENDIX 5: WATER QUALITY VOLUME CALCULATIONS & RUNOFF REDUCTION VOLUME CALCULATIONS
- APPENDIX 6: HYDROGRAPH DIAGRAMS & SUMMARIES
- APPENDIX 7: EXISTING 1-, 10-, 100-YEAR HYDROGRAPHS
- APPENDIX 8: PROPOSED 1-, 10-, 100-YEAR HYDROGRAPHS
- APPENDIX 9: RESERVOIR REPORTS
- APPENDIX 10: CONSTRUCTION SITE INSPECTION FORM, NOTICE OF INTENT, AND MS4 ACCEPTANCE
- APPENDIX 11: SYSTEM MAINTENANCE AND OPERATION PROCEEDURES, CONSTRUCTION WASTE MANAGEMENT & SPILL PREVENTION PLANS

1.0 INTRODUCTION

Engineering & Surveying Properties, PC (EP) prepared this report summarizing the potential stormwater impact of the proposed development of the property, known as Donnelly Sugarloaf, on downstream properties and receiving waters.

1.1 PURPOSE

The purpose of the Stormwater Pollution Prevention Plan (SWPPP) is to:

- a. Maintain existing drainage patterns as much as possible and continue the conveyance of upland watershed runoff;
- b. Mitigate increases in stormwater runoff resulting from the proposed development without adversely affecting downstream conditions;
- c. Mitigate potential stormwater impacts and prevent soil erosion and sedimentation resulting from stormwater runoff.

1.2 SCOPE

The scope of the SWPPP for Donnelly Sugarloaf described herein is as follows:

- a) Describe and estimate existing stormwater runoff conditions;
- b) Describe and estimate proposed stormwater runoff conditions;
- c) Describe and evaluate stormwater management facilities planned as part of the proposed development.

2.0 PROJECT DESCRIPTION

The Donnelly Sugarloaf project is a development of a project site on ± 2.31 acres located on the western side of Kings Highway and east of Creamery Pond in the hamlet of Sugarloaf which is within the Town of Chester, Orange County, New York. The project is defined as Town of Chester tax lot, Section 13 Block 3 Lots 2. A site location map is included as Figure 1 in Appendix 1.

As proposed, the Donnelly Sugarloaf project involves the construction of a \pm 7,800 square foot catering facility with attached residence on the northern edge of the parcel which will be added onto the existing structure on site. A detached 24'x40' accessory barn is proposed to be constructed in the southwest corner of the parcel. Access to the site will come via an existing driveway from Kings Highway which will be utilized as a one-way entrance and a separate existing driveway will be used as an exit. Associated parking areas and infrastructure will be built/ expanded to serve the proposed project. Two stormwater management facilities will be constructed to mitigate stormwater runoff quality and quantity increases from the proposed expansion as well as a water quality basin.

3.0 TOPOGRAPHY AND SOILS

The existing topography in the Donnelly Sugarloaf project area is generally sloping across the site to the west, ranging from approximately 533 feet above mean sea level (AMSL) to 503 feet AMSL. The eastern portion of the project site is gently sloped (0%-10%) making up approximately 48% of the site. Moderate sloped areas (10%-15%) consist of approximately 12% of the site. The area of significant slope (15%-25%) on site represents 20% of the site area, with the remaining portion of the site (20%) consisting of severe slopes (>25%). The majority of the significant and severe slopes generally exist across the center of the project site sloping down towards Creamery Pond.

Soils information for the Donnelly Sugarloaf project area was assembled from data provided by the U.S. Department of Agriculture Soil Conservation Service printed in the Soil Survey of Orange County identifies the presence of Hoosic (HoB & HoC) and Alden (Ab) soil complexes within the areas of the proposed project site. These soils are considered to be a part of the "A" & "D" hydrologic soils group. The soils survey also shows small areas of water from Creamery Pond. A soil map is included as in Appendix 2.

4.0 METHODOLOGY

The methodology utilized for this analysis is based upon the U.S.D.A. Soil Conservation Service's Technical Release No. 20 and Technical Release No. 55, as utilized by the software entitled Hydrology Studio.

Hydrology Studio is a Microsoft Windows based program for analyzing the hydrology and hydraulics of stormwater runoff. It utilizes the latest techniques to predict the stormwater flows from any given storm event.

Hydrology Studio has the capability of computing hydrographs (representing discharge rates characteristic of specific watershed conditions, precipitation and geologic factors), combining hydrographs, and routing flows through pipes, streams and ponds. A drainage

model can consist of four different components - subareas, combinations, reaches and reservoirs.

A subarea consists of a relatively homogeneous area of land, which produces a volume and rate of runoff unique to that watershed. A subarea combination is the hydrologic addition of two subareas in order to determine the peak runoff at a design point. A reach is a channelized conveyance structure which routes the runoff from one point to another. A reservoir consists of a natural or man-made impoundment which temporarily stores stormwater runoff and that empties in a manner determined by various hydraulic structures located at its outlet.

The SWPPP for the Donnelly Sugarloaf was based upon the New York State Stormwater Management Design Manual published by the New York State Department of Environmental Conservation (NYSDEC) issued on January 2015. Criteria set forth by this manual, requires analysis and determination of the required Water Quality Volume (WQv), to provide extended detention of the 1-year storm event for Stream Channel Protection (Cpv), to control the peak discharge of the 10-year storm event also known as Overbank Flood Protection Criteria (Qp), and to control the peak discharge and safely pass the 100-year storm event otherwise known as Extreme Flood Control Criteria (Qf).

The SWPPP for Donnelly Sugarloaf was developed utilizing the "five step" process for Stormwater Site Planning and Practice Selection. The five steps consist of site planning, determination of the water quality treatment volume, runoff reduction volumes applied through the use of "green technologies", application of standard stormwater management practices (SMP's) for remaining water quality volumes, and application of volume and peak rate control methods as required. Each of the five "steps" is further discussed in detail within this report.

5.0 STORMWATER MANAGEMENT PLANNING

5.1 INITIAL SITE PLANNING

Development of the proposed site plan within the "site planning" process was an iterative process with different conceptual layouts developed for the project site. The current proposed plan was developed after careful consideration of many planning techniques and potential environmental impacts. The proposed site plan

was devised to protect and preserve natural features, maintain natural drainage patterns, and avoid to the greatest extent practical, the disturbance of erodible soils. The site plan with proposed watershed boundaries can be seen as Figure 3 in Appendix 1.

The hydrologic and hydraulic analysis was performed by delineating the tributary watershed to the design point and then dividing these tributary areas into relatively homogeneous subareas. The separation of the watershed into subareas was dictated by watershed conditions, methods of collection, conveyance and points of discharge. Watershed characteristics for each subarea were then assessed from topographical maps, soil surveys, site investigations and land use maps.

5.1.1 EXISTING CONDITIONS

The existing watershed within the site and areas contributory to the site's discharge location consists of two (2) distinct drainage areas with two (2) design points. The existing property generally slopes to the west and existing stormwater runoff from a majority of the site flow towards Creamery Pond on the western edge of the property. The remaining area is located along the eastern portion of the site and flows towards Kings Highway. Figure 2 in Appendix 1 identifies the subareas and their corresponding design points. The characteristics of each of the existing subareas of this watershed are detailed within Table 1 below.

The watershed was delineated and a contributory area, a curve number (CN) and time of concentration (Tc) was determined for the watershed. Calculations for the CN's and Tc's are included in Appendices 3 and 4, respectively. It should be noted that the total contributory area includes offsite areas where appropriate and therefore, the total drainage area size will differ from the project development area.

DRAINAGE AREA DESIGNATION	DRAINAGE AREA SIZE (Ac.)	CN	Tc (min)
EX – A	1.10	80	10.20
EX – B	1.71	54	9.60
TOTAL	2.81		

TABLE 1: EXISTING DRAINAGE AREA CHARACTERISTICS

The watershed responses to the 1-, 10- and 100-year 24-hour storm events were computed and evaluated at the design point. The peak rates of runoff at each of the 1-, 10-, & 100-year storm events are presented in Table 9. Stormwater computations are attached at the end of this report in Appendices 7 & 8.

5.1.2 PROPOSED CONDITIONS

For this analysis, the existing watersheds was broken down into a postdevelopment watershed consisting of two (2) subareas and one (1) stormwater facility while maintaining the two design points. The subareas under the proposed development are identified in Figure 3. The characteristics of each proposed subarea are detailed in Table 2 below. It should be noted that the total contributory area includes off-site area and therefore, the total drainage area size will differ from the project development area.

DRAINAGE AREA DESIGNATION	DRAINAGE AREA SIZE (Ac.)	CN	Tc (min)
PR–A	0.75	86	13.20
PR-B1	0.98	85	10.80
PR-B2	0.54	84	6.00
PR-B3	0.53	54	13.20
TOTAL	2.81		

TABLE 2: PROPOSED DRAINAGE AREA CHARACTERISTICS

5.2 WATER QUALITY VOLUME

The second step of the stormwater site planning process is determination of the required water quality treatment volume (WQ_v). WQ_v is calculated using the 90% Rule as defined by NYSDEC Stormwater Management Design Manual. The 90% Rule is defined as:

$$WQ_v = [(P)(R_v)(A)] / 12$$

Where: P is the 90% Rainfall Event Number R_v is equal to 0.05 + 0.009*I I is the Impervious Cover in percent A is the subarea total acreage

The WQ_v was calculated for both watersheds encompassing the entire project site, as well as including additional off-site areas. The results of the WQ_v calculations are included in Table 3 below.

TABLE 3: REQUIRED WATER QUALITY VOLUMES

	WQv (Ac-ft)
SITE	0.133

5.3 RUNOFF REDUCTION VOLUME

Step three of the stormwater site planning process is the incorporation of "green infrastructure technologies" and standard SMP's with runoff reduction volume (RR_v) capacity. The intended result of RR_v , is to treat 100% of the WQ_v and replicate pre-development hydrology, however if unattainable, provide the minimum RR_v required and provide additional treatment for the remaining WQ_v . Each of the following green technologies and standard SMP's with RR_v capacity were analyzed for implementation along with an explanation of how they are used or unable to be used on this project. The location of the green technologies used can be seen in Figure 4.

Green Technologies

- Conservation of Natural Areas
 - The property is small, and proposed as almost fully developed therefore conservation of natural areas is not proposed.

- Sheet flow to Riparian Buffers / Filter Areas
 - As all areas suitable for a riparian buffer and filter areas are contributary offsite and would preclude any future development of adjacent properties, therefore the implementation of this practice is not proposed.
- Vegetated Open Swales
 - As all areas suitable for vegetated open swales have been accounted for in other green technologies, the implementation for this practice is not proposed.
- Tree Planting / Tree Box
 - The site design proposes a landscaping plan however this landscaping will be utilized for aesthetic purposes only and will not be designed to incorporate stormwater quality treatment.
- Disconnection of Rooftop runoff
 - Due to a lack of filter strips or grassed areas uphill of the stormwater conveyance paths, the rooftop runoff from the proposed buildings will be directly connected to catch basins.
- Stream Daylighting
 - There are no culverted/piped streams on-site that can be day-lighted therefore this technology is not applicable to this project.
- Rain Gardens
 - Due to the fact that most of the tributary roof areas or pavement drainage areas consist of areas greater than 1,000 sq.ft., rain gardens could not be utilized as a green technology on this project.
- Green Roof
 - As all the areas of the proposed development, including all new rooftop areas, have been accounted for in other green technologies, the implementation of this practice is not proposed.
- Stormwater Planters
 - Stormwater planters are suitable for small runoff areas such as rooftops or plaza and courtyards. This project is utilizing other

technologies for treatment of rooftop runoff; therefore, the green technology of stormwater planters was not implemented.

- Rain Tanks/Cistern
 - Rain Tanks and cisterns are well-suited to treat rooftop runoff, however as previously stated, the rooftop disconnect technology was included in the design for this project.
- Porous Pavement
 - Porous pavement was not considered as areas eligible for porous pavement have already been considered under a different runoff reduction practice and soil type "D" is not desirable for this practice.
- Soil Restoration
 - Soil restoration measures must be applied to all areas of disturbance that will be re-established as non-impervious cover to recover the original properties and porosity of the soil to the greatest extent practical. Soil restoration techniques and requirements are discussed further in Section 5.6 of this report.

Standard SMP's with RRy Capacity

- Infiltration Practice
 - The use of infiltration practices is proposed as the soils were found to be very porous and allow for significant infiltration rates.
- Bio-Retention Practice
 - A bio-retention facility has not been considered due to the lack of area to incorporate into the design and therefore is not proposed.
- Dry Swale (Open Channel Practice)
 - Dry swales were not utilized for this project as all areas of proposed development have been accounted in other green technologies.

The RR_v for each of the green technologies used has been calculated for the point of analysis. The total RR_v was calculated and compared to the WQ_v for the design point. The minimum RR_v is based upon the hydrological soil group (HSG)

classification within the watershed and is defined a Specific Reduction Factor (S). The reduction factors for each HSG are shown below in Table 4.

HSG	S
A	0.55
В	0.40
С	0.30
D	0.20

TABLE 4: SPECIFIC REDUCTION FACTOR (S)*

* Watersheds with multiple HSG's shall utilize a weighted average

RR_{v MIN} was calculated for each watershed in accordance with the following formula:

$$RR_{v MIN} = [(P)(0.95)(S)(I)] / 12$$

The total calculated RR_v provided is compared to the RR_{v MIN} to ensure that the green technologies proposed are providing the minimum reduction of the WQ_v as required. The RR_{v MIN} and the total RR_v provided along with the revised WQ_v are shown below in Table 5. The revised WQ_v is calculated using the 90% rule as noted in Section 5.2 above, however, the contributory area and impervious area are reduced through the application of green technologies that have been utilized. The calculations for the required and adjusted water quality volumes along with the runoff reduction volumes calculations are shown in Appendix 5.

$RR_{v MIN}$	Total RR _v (Provided)	Revised WQ _v
0.064	0.074	0.051

TABLE 5: RUNOFF REDUCTION VOLUMES & REVISED WQV

5.4 APPLICATION OF STANDARD SMP'S FOR THE REVISED WQ_V

Continuing with the stormwater site planning process, step four is to ensure treatment for the remaining WQ_v is provided. The Design volume of Basin (WQv Provided) accounts to 0.096 ac-ft as shown on the calculations page 2 of 2 in Appendix 5. The RRv provided (0.086 ac-ft) is greater than the RRv min. (0.022 ac-ft) but in accordance with NYSDEC guidelines only 90% of the required WQv can be accounted as RRv, so the remainder of WQv is accounted for within the

infiltration chambers since they are considered standard SMPs with RRv capacity. In addition, the entire 1 year runoff volume is infiltrated therefore meeting the RRv requirements.

5.5 VOLUME AND PEAK RATE CONTROL

The fifth and final step of the stormwater site planning process is to apply volume and peak rate control as necessary through the use of standard stormwater management practices. In preparing the SWPPP, it was determined that on-site stormwater facility of an underground storage system will be necessary to mitigate the potential increase in peak stormwater runoff rates from the proposed site improvements.

5.5.1 CHANNEL PROTECTION VOLUME

The required volume control consists of Channel Protection Volume (Cp_v) which is designed to protect downstream channels from erosion. The Cp_v is achieved through providing extended detention of the 1-year storm event for any volume not previously reduced through runoff reduction volume reduction (RR_v), for a period of 24 hours. The calculated 1-year storm event runoff volume along with the required Cp_v volume provided are shown in Table 6. However, as the total 1-year storm runoff from all paved areas are infiltrated back into the ground, no additional Cp_v is required.

Basin	1-Yr Runoff Volume (Ac-ft)	RRv Provided (Ac-ft)	Cpv Required (Ac-ft)	Cpv Provided (Ac-ft)
Underground Detention	0.000	0.074	0.000	0.000

TABLE 6: CALCULATED CHANNEL PROTECTION VOLUMES (CPV)

5.5.2 PEAK RATE CONTROL

The peak discharge rate is controlled utilizing the storage volume available in the stormwater pond and controlling discharge through an overflow weir. The watershed responses to the 1-, 10- and 100-year - 24-hour storm events were computed and evaluated at the aforementioned design points. The peak rates of runoff realized at the design points are presented in Table 9 below. Stormwater computations are attached at the end of this report. The total peak runoff rates at the design point for the existing condition as well as the final proposed condition have been calculated and shown below in Table 9. The peak runoff rates have been reduced in the proposed conditions during the 1-, 10- and 100-year design storms for all drainage areas on site.

	Criteria	Design Point A	Design Point B
	Existing (cfs)	1.03	0.024
1 – YEAR	Proposed (cfs)	1.01	0.022
(Cpv)	Reduction (cfs)	-0.03	-0.002
	Reduction (%)	-2.8%	-8.3%
	Existing (cfs)	2.89	1.11
10 – YEAR	Proposed (cfs)	2.38	0.94
(Qp)	Reduction (cfs)	-0.51	-0.17
	Reduction (%)	-17.7%	-15.1%
	Existing (cfs)	6.40	5.26
100 –	Proposed (cfs)	4.80	4.61
YEAR (Qf)	Reduction (cfs)	-1.60	-0.65
	Reduction (%)	-24.9%	-12.4%

TABLE 7: SUMMARY OF RESULTS AT THE DESIGN POINTS

Since the runoff rates have been decreased in the post-development condition, there will be no adverse impact to the downstream receiving waters. Therefore, the SWPPP designed for the Donnelly Sugarloaf will accomplish the intent of its design.

5.6 SOIL RESTORATION

Soil restoration is intended to recover the original properties and porosity of the soil to the greatest extent practicable. Soil restoration measures shall be applied to any disturbed area within the project prior to establishment of permanent vegetation and installation of landscaping. Any proposed impervious areas do not require soil restoration measures. Soil restoration measures such as tilling allows for compacted soil to gather oxygen and create temporary and even permanent air voids and when combined with the incorporation of organic material, greatly

improves the soils characteristics to temporarily store water and subsequent runoff reduction through infiltration and evapotranspiration.

Various soil disturbance activities related to construction of land development within various soil types and the associated minimum required soil restoration techniques are shown in Table 9.

Type of Soil Disturbance	Soil Restoration Requirement		Comments / Examples
No Soil Disturbance	Restoration not permitted		Preservation of Natural Features
Minimal Soil Disturbance	Restoration not required		Clearing and Grubbing
Areas where	HSG A & B	HSG C & D	
topsoil is stripped only – NO change in grade.	Apply 6" of topsoil	Aerate* and apply 6" of topsoil	Protect Areas from any ongoing construction activities.
	HSG A & B	HSG C & D	
Areas of cut or fill	Aerate* and apply 6" of topsoil	Apply full Soil Restoration* *	
Heavy traffic areas on site (especially in a zone 5'-25' around buildings, but not within the 5' perimeter around the foundation walls)	Apply full Soil Restoration** (de-compaction and compost enhancement)		
Areas where Runoff Reduction and/or Infiltration Practices are applied.	Restoration not required, but maybe applied to enhance the reduction specified for appropriate practices		Keep construction equipment from crossings these areas. To protect newly installed practice from any ongoing construction activities construct a single phase operation fence area.
Redevelopment projects	Soil restoration is required on redevelopment projects in areas where existing impervious area will be converted to pervious area		

TABLE 8: SOIL RESTORATION REQUIREMENTS

* Aeration includes the use of machines such as tractor-drawn implements with coulters making a narrow slit in the soil, a roller with many spikes making indentations in the soil, or prongs which function like a mini-subsoiler.

** Per "Deep Ripping and De-compaction Guidelines", NYSDEC 2008

6.0 EROSION AND SEDIMENT CONTROL MEASURES

Soil erosion and sediment control measures have been detailed on the plans and outlined herein. The following are general measures that should be implemented:

- a. Damage to surface waters resulting from erosion and sedimentation shall be minimized by stabilizing disturbed areas and by removing sediment from construction site discharge.
- b. Following the completion of construction activities in any portion of the site, permanent vegetation shall be re-established on all exposed soils within 14 days. Also, in areas where construction will temporarily cease for 21 days or more, the site shall be stabilized within 7 days of the last construction activity. After completion of final rough grading, topsoil shall be spread to a depth of 6 inches or more and tested for nutrient and soil composition. The topsoil shall be amended as necessary to encourage successful growth of proposed vegetation.
- c. Site preparation activities shall be planned to minimize the area and duration of soil disturbance. The project is proposed to be built in a single phase while limiting the amount of disturbance at any one time. The plans approved for construction contains a detailed "Erosion & Settlement Control Plan" which depicts the limits of grading along with the required earth cut and fill locations (including stockpile (topsoil and excess material) locations if necessary). In addition, site specific phased erosion control measures required are shown on the approved plans for construction. In accordance with the NYSDEC GP-0-20-001 permit.
- d. Permanent traffic corridors shall be established and "routes of convenience" shall be avoided. Off-site sediment tracking shall be minimized through regularly scheduled sweeping and good housekeeping of construction vehicles.
- Additional measures shall be implemented for any site work occurring during the "winter months period" which generally consists of November 15th through April 1st. The additional measures shall be in accordance with the Standards

and Specifications for Winter Stabilization as detailed in the New York State Standards and Specifications for Erosion Control, latest edition, as published by the New York State Department of Environmental Conservation

- f. A qualified professional shall inspect and log the erosion and sediment control measures once every seven days once earth disturbance has commenced and continue until the site has achieved final stabilization in accordance with the requirements. During times of possible inactivity (i.e. winter months), upon the site being temporarily stabilized, the professional shall perform inspections monthly. The professional shall make recommendations to the operator on how to maintain the integrity and function of all temporary erosion control measures throughout the duration of the development process. Any deficiencies in the measures shall be corrected as soon as possible by the operator.
- g. An up to date Construction Site Log Book which includes this SWPPP for "Donnelly Sugarloaf" shall be maintained on site at all times during construction. The Construction Site Log Book shall include at a minimum the following items:
 - SPDES General Permit for Stormwater Discharges (Permit No. GP- 0-20-001)
 - A copy of the Final (or updated if revised) SWPPP
 - A copy of the Final (or updated if revised) Site Plans
 - A copy of the Notice of Intent (NOI)
 - A copy of the MS4 Signoff (if applicable)
 - A copy of the 5 acre waiver from the MS4 (if applicable)
 - A copy of the Acknowledgement of the NOI from the NYSDEC
 - Owner & Contractor Certifications
 - Copies of all erosion & sediment control inspections

h. .

In particular, the following measures will be implemented:

 a. Pre-Construction Installation: Prior to any disturbance on site, silt fence shall be installed in accordance with the approved plans in the area of the first phase. Prior to commencement of any subsequent phase, silt fence shall be installed in the proper phase in accordance with the approved plans. Siltation barriers shall be maintained in good condition and reinforced, extended, repaired or replaced as necessary.

- b. In no case shall erodible materials be stockpiled within 25 feet of any ditch, stream or other surface water body.
- c. Permanent vegetative cover: Immediately following the completion of construction activity in any portion of the site, permanent vegetation shall be established on all exposed soils by properly seeding at a coverage rate as noted on the approved plans and covered with straw. Water shall be applied to newly seeded areas as needed until grass cover is well established.
- d. Washouts shall be immediately repaired, reseeded and protected from further erosion. All accumulated sediment shall be removed and contained in appropriate spoil areas. To effectively control wind erosion, water shall be applied to all exposed soils as necessary

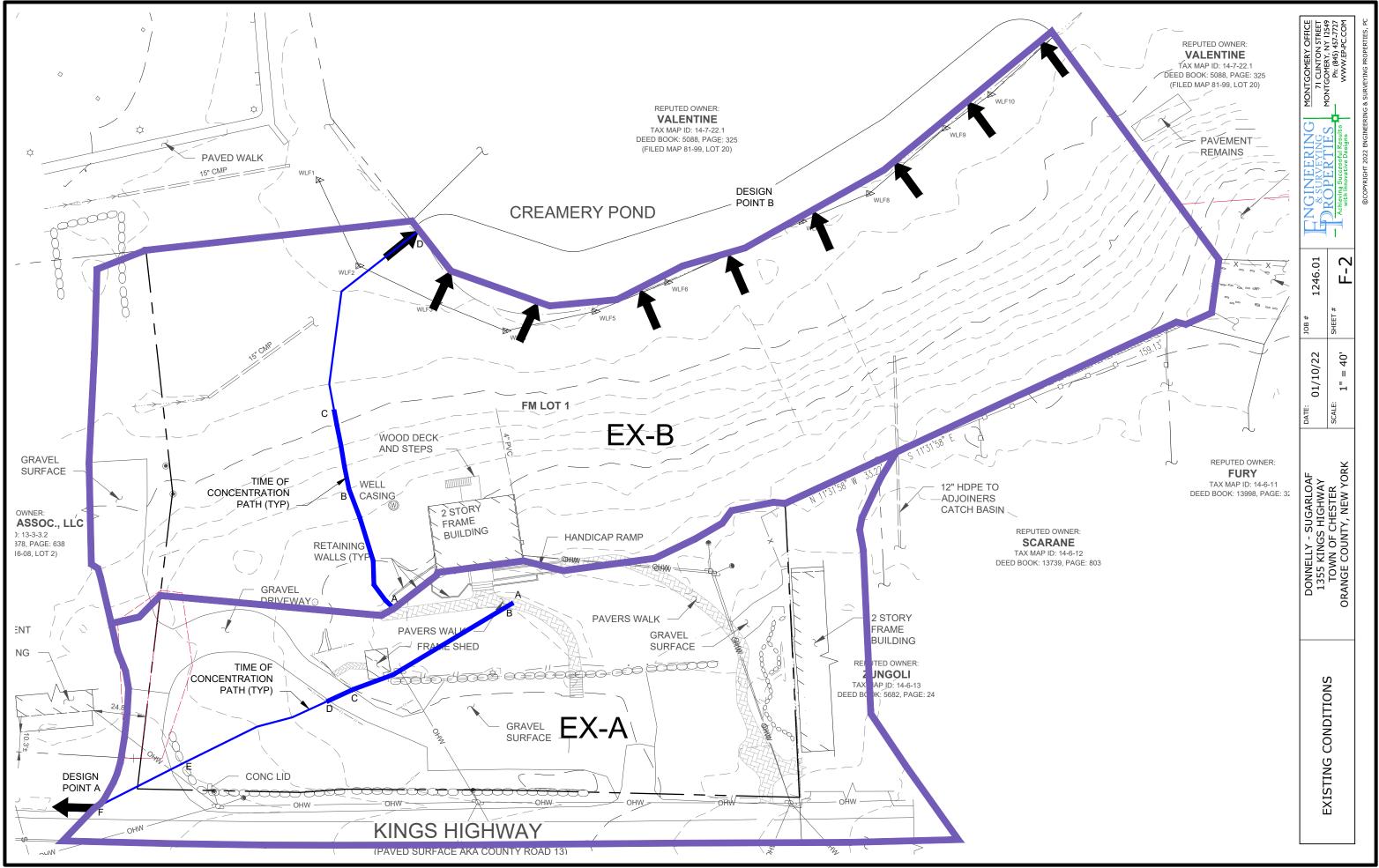
7.0 LONG TERM MAINTENANCE OF WATER QUALITY FEATURES

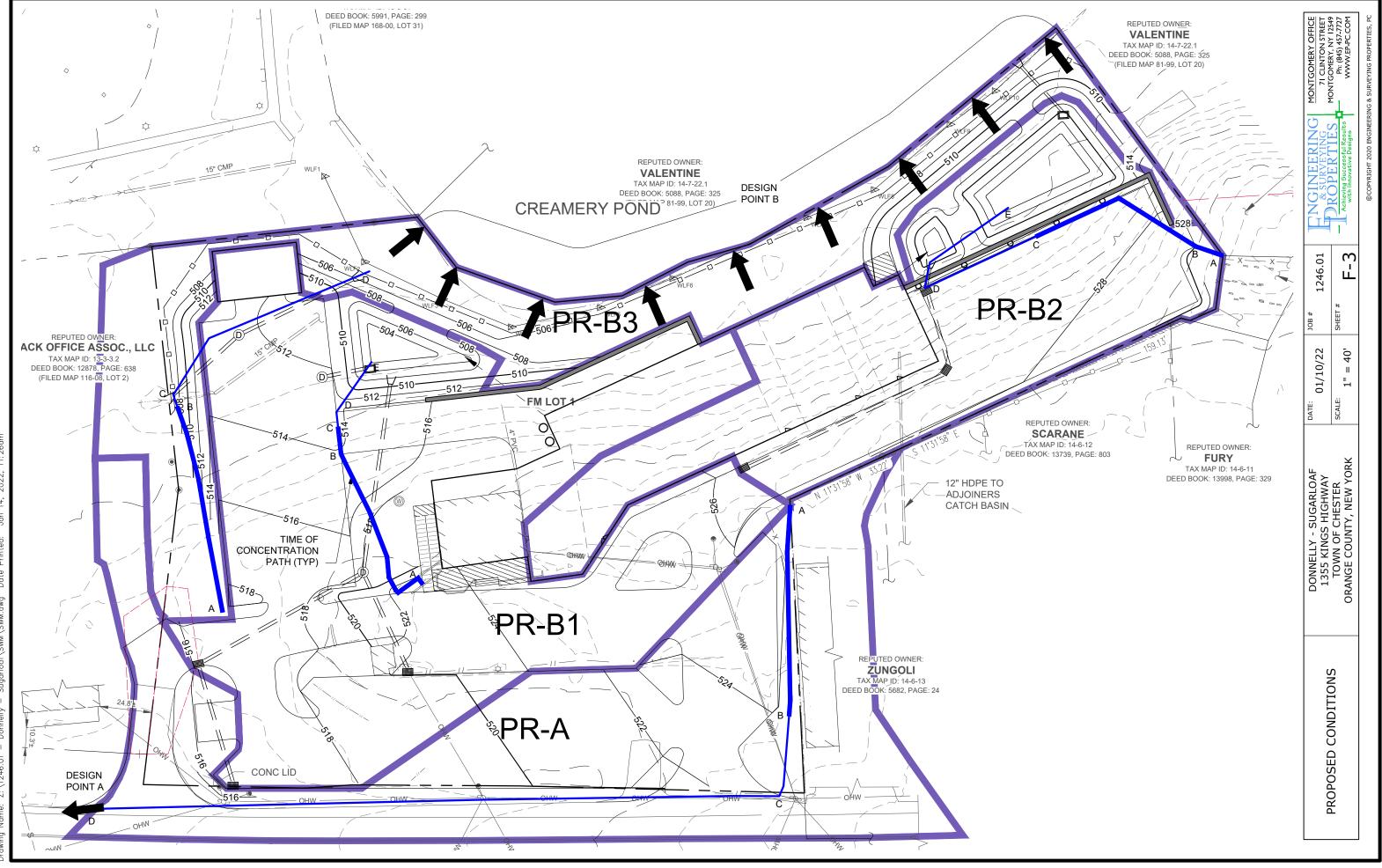
Upon completion of the project, the ownership and maintenance of the stormwater facilities shall be of private ownership. The responsible entity shall be responsible to ensure that the facilities operate and function as designed through proper maintenance as follows.

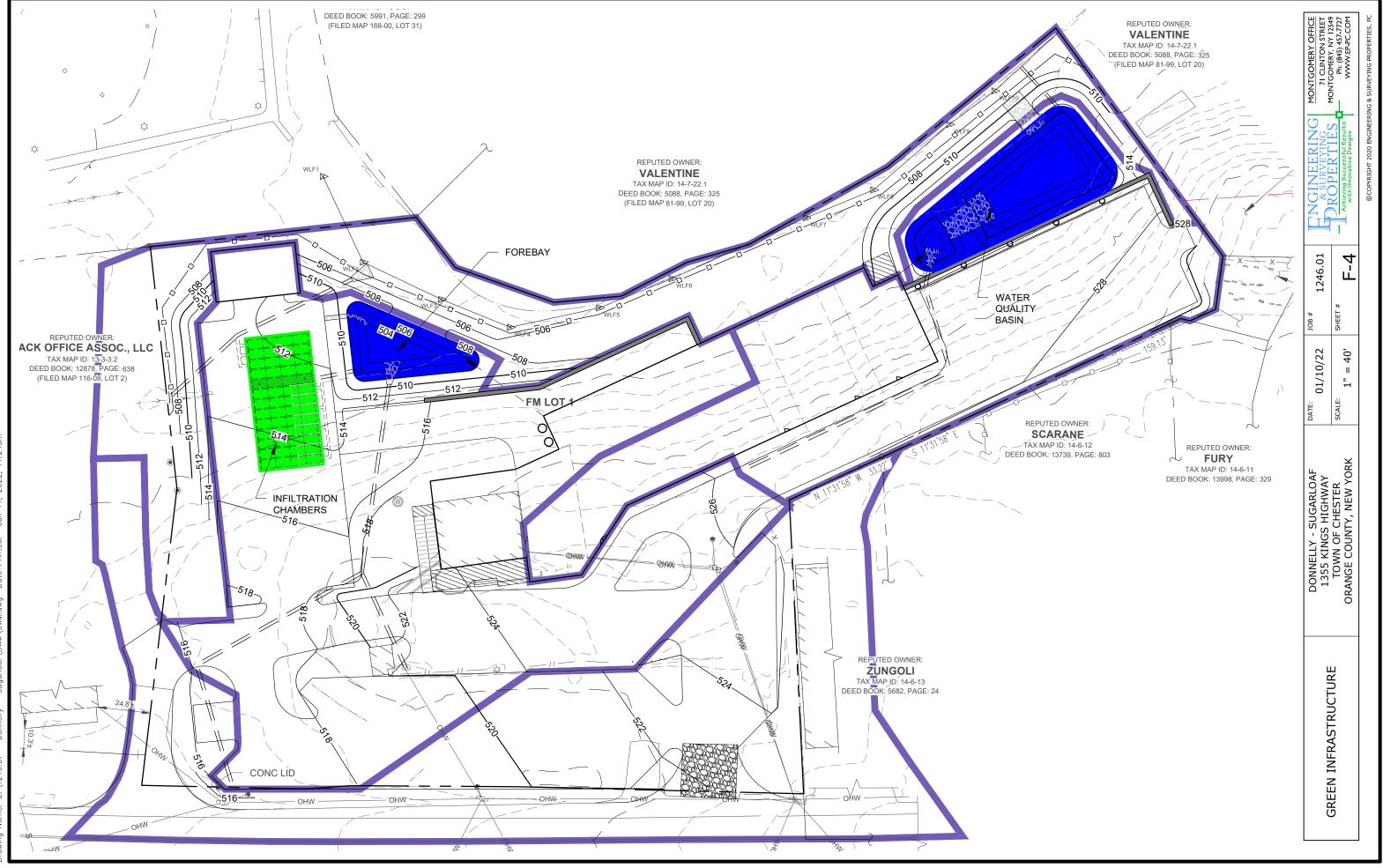
- a. Regular inspection and maintenance of the proposed facility is required to ensure its long-term water quality and quantity reduction functions. Maintenance requirements for the underground storage facility are as follows:
 - The isolator row of the underground chamber units shall be inspected every 6 months and cleaned at a minimum of once every 2 years and if sediment accumulation reaches a depth greater than 4".
 - ii. All catch basins, outlet manholes and end sections shall be inspected annually for debris and operability. Any deficiencies shall be repaired or removed immediately.

iii. Catch basins shall be vacuum cleaned once every three years or if determined necessary upon visual inspection.

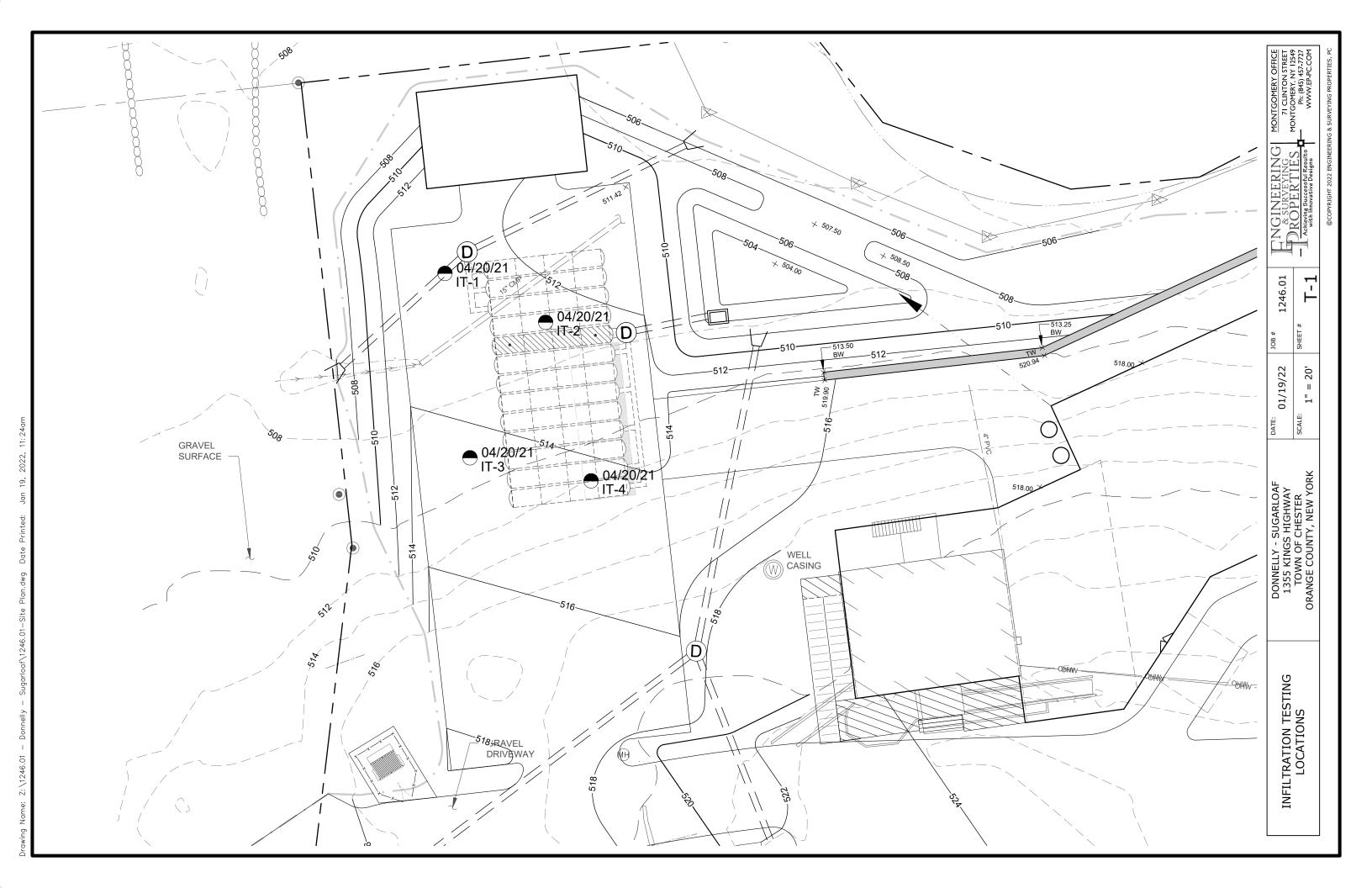
8.0 SUMMARY OF FINDINGS AND CONCLUSIONS


Based on the analysis of the pre-development and post-development stormwater conditions, and the implementation of stormwater quality and sediment and erosion control measures, the potential stormwater impacts of the "Monarch Woods Senior Community" project will be mitigated to the greatest extent practical.


- a. Prevent increases in flooding and flood damage through the reduction of the rate of runoff from all areas.
- b. Reduce the erosion potential from the development through the reduction of the rate of runoff from the project site and through the implementation of the soil and erosion control measures outlined on the project plans and as highlighted herein.
- c. Decreases non-point source pollution and water quality degradation through the use of multiple "green technologies" including sheet flow to filter strips, vegetated open swales, tree plantings, roof top connections, soil restoration.
- d. Those portions of the site which do not direct runoff into a stormwater management practice, will sheet flow through proposed lawn areas and through existing vegetative cover prior to discharging from the site.
- e. All criteria set forth in the New York State Stormwater Management Design Manual have been met.
- f. Post-development peak discharge rates will be reduced below pre-development peak discharge rates or their impacts minimized.
- g. Sediment and erosion control measures are designed to minimize erosion loss and downstream sediment deposits.


<u>APPENDIX 1</u>

FIGURES



<u>APPENDIX 2</u> <u>SOILS MAP AND</u> <u>CLASSIFICATIONS, SOILS</u> <u>TESTING RESULTS & RAINFALL</u>

DATA

Number Depth Diameter I me (Water drop in inches over One Hour) I	OF 1 verage Drop
PROJECT TITLE LOCATION Donnelly - Sugarloaf Town of Chester CALCULATED BY APPROVED BY MP RW Test Hole Test Hole Number Depth Diameter Time (Water drop in inches over One Hour) I	verage
CALCULATED BY APPROVED BY REF DRAWING(S) MP RW Infiltration Test Runs Average Aver	-
MP RW Test Hole Test Hole Number Depth Diameter Time (Water drop in inches over One Hour)	-
Number Depth Diameter I Ime (Water drop in inches over One Hour) I	-
	Drop
Start: 10:20 AM 11:20 AM 12:20 PM 1:20 AM	
	23.0
Drop: 24.00 24.00 24.00 20.00	20.0
Comments:	
Start: 10:50 AM 11:25 AM 12:18 PM 1:18 AM	<u></u>
	23.0
Drop: 24.00 24.00 24.00 20.00	
Comments:	
Start: 9:25 AM 10:25 AM 11:30 AM 12:25 PM	
3 24" 6" Finish: 10:25 AM 11:20 AM 12:25 PM 1:25 AM 2	24.0
Drop: 24.00 24.00 24.00 24.00	
Comments:	
Start: 9:45 AM 10:30 AM 11:30 AM 12:30 PM	
4 24" 6" Finish: 10:30 AM 11:30 AM 12:30 PM 1:30 AM 2	24.0
Drop: 24.00 24.00 24.00 24.00	
Comments:	
Start:	
Finish:	
Drop:	
Comments:	
Start:	
Finish:	
Drop:	
Comments:	
Start:	
Finish:	
Drop:	
Comments:	
Start:	
Finish:	
Drop:	
Comments:	

Extreme Precipitation Tables

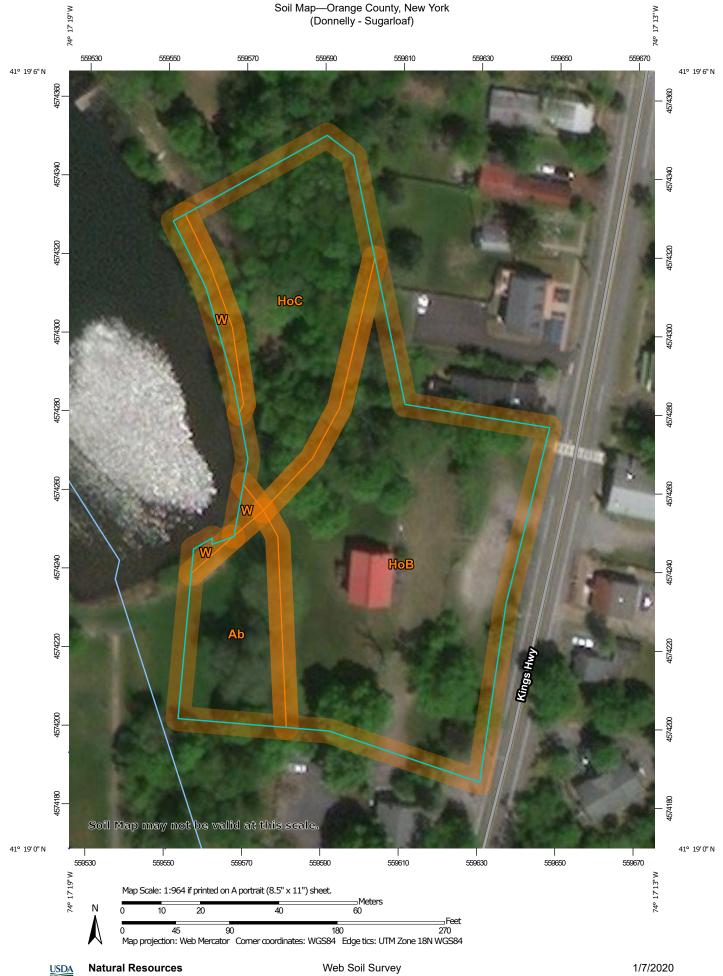
Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	Yes
State	New York
Location	
Longitude	74.288 degrees West
Latitude	41.317 degrees North
Elevation	0 feet
Date/Time	Wed, 08 Jan 2020 14:48:20 -0500

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.33	0.51	0.63	0.82	1.03	1.28	1yr	0.89	1.20	1.46	1.79	2.19	2.66	3.07	1yr	2.35	2.95	3.39	4.09	4.73	1yr
2yr	0.40	0.62	0.76	1.00	1.25	1.55	2yr	1.08	1.45	1.77	2.17	2.65	3.22	3.67	2yr	2.85	3.53	4.04	4.76	5.42	2yr
5yr	0.46	0.72	0.90	1.20	1.54	1.94	5yr	1.33	1.79	2.23	2.74	3.33	4.03	4.64	5yr	3.57	4.46	5.09	5.88	6.65	5yr
10yr	0.52	0.81	1.03	1.39	1.81	2.29	10yr	1.56	2.10	2.65	3.26	3.97	4.79	5.54	10yr	4.24	5.33	6.07	6.91	7.77	10yr
25yr	0.60	0.95	1.21	1.68	2.24	2.87	25yr	1.93	2.60	3.32	4.10	5.00	6.02	7.02	25yr	5.33	6.75	7.66	8.55	9.56	25yr
50yr	0.68	1.09	1.39	1.95	2.63	3.40	50yr	2.27	3.06	3.95	4.88	5.94	7.16	8.40	50yr	6.33	8.08	9.13	10.05	11.19	50yr
100yr	0.77	1.24	1.60	2.27	3.09	4.03	100yr	2.67	3.60	4.69	5.82	7.08	8.51	10.06	100yr	7.54	9.67	10.90	11.82	13.11	100yr
200yr	0.87	1.42	1.84	2.63	3.64	4.77	200yr	3.14	4.23	5.58	6.93	8.44	10.14	12.05	200yr	8.97	11.59	13.02	13.90	15.37	200yr
500yr	1.04	1.70	2.22	3.23	4.53	5.98	500yr	3.91	5.25	7.01	8.72	10.64	12.78	15.31	500yr	11.31	14.72	16.47	17.24	18.97	500yr


Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.30	0.46	0.56	0.76	0.93	1.11	1yr	0.80	1.09	1.23	1.56	2.03	2.28	2.59	1yr	2.02	2.49	2.80	3.81	4.31	1yr
2yr	0.38	0.59	0.72	0.98	1.21	1.45	2yr	1.04	1.42	1.64	2.11	2.62	3.12	3.55	2yr	2.76	3.41	3.91	4.64	5.28	2yr
5yr	0.43	0.66	0.81	1.12	1.42	1.68	5yr	1.23	1.64	1.92	2.46	3.07	3.73	4.29	5yr	3.30	4.13	4.76	5.48	6.23	5yr
10yr	0.47	0.72	0.89	1.24	1.61	1.89	10yr	1.39	1.84	2.15	2.75	3.48	4.26	4.90	10yr	3.77	4.71	5.50	6.21	7.01	10yr
25yr	0.53	0.81	1.01	1.44	1.89	2.18	25yr	1.63	2.13	2.51	3.23	4.07	5.03	5.88	25yr	4.45	5.65	6.65	7.34	8.16	25yr
50yr	0.59	0.89	1.11	1.60	2.15	2.44	50yr	1.85	2.39	2.83	3.65	4.61	5.66	6.77	50yr	5.01	6.51	7.69	8.36	9.20	50yr
100yr	0.65	0.98	1.23	1.78	2.44	2.73	100yr	2.11	2.67	3.19	4.12	5.23	6.36	7.81	100yr	5.63	7.51	8.91	9.50	10.32	100yr
200yr	0.73	1.09	1.39	2.01	2.80	3.06	200yr	2.42	2.99	3.60	4.69	5.95	7.18	9.02	200yr	6.35	8.68	10.35	10.82	11.57	200yr
500yr	0.85	1.26	1.62	2.36	3.35	3.56	500yr	2.89	3.48	4.24	5.58	7.08	8.38	10.94	500yr	7.42	10.52	12.64	12.87	13.52	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.36	0.55	0.68	0.91	1.12	1.35	1yr	0.97	1.32	1.56	1.97	2.42	2.86	3.32	1yr	2.53	3.19	3.67	4.31	5.10	1yr
2yr	0.41	0.63	0.78	1.05	1.30	1.55	2yr	1.12	1.52	1.77	2.26	2.80	3.36	3.82	2yr	2.97	3.67	4.22	4.93	5.65	2yr
5yr	0.50	0.78	0.96	1.32	1.68	1.99	5yr	1.45	1.95	2.27	2.91	3.63	4.36	4.95	5yr	3.86	4.76	5.45	6.30	7.08	5yr
10yr	0.59	0.91	1.13	1.58	2.04	2.44	10yr	1.76	2.39	2.76	3.55	4.44	5.37	6.14	10yr	4.75	5.91	6.67	7.58	8.47	10yr
25yr	0.75	1.13	1.41	2.02	2.65	3.19	25yr	2.29	3.12	3.62	4.65	5.78	7.08	8.06	25yr	6.26	7.75	8.71	9.70	10.78	25yr
50yr	0.88	1.34	1.67	2.41	3.24	3.81	50yr	2.80	3.73	4.42	5.68	7.05	8.76	9.91	50yr	7.75	9.53	10.65	11.70	12.94	50yr
100yr	1.05	1.59	1.99	2.87	3.94	4.65	100yr	3.40	4.54	5.39	6.93	8.60	10.85	12.19	100yr	9.60	11.72	13.03	14.11	15.56	100yr
200yr	1.25	1.88	2.38	3.44	4.80	5.67	200yr	4.14	5.54	6.58	8.46	10.49	13.48	15.00	200yr	11.93	14.42	15.95	17.01	18.73	200yr
500yr	1.58	2.34	3.02	4.38	6.23	7.36	500yr	5.38	7.20	8.57	11.02	13.63	17.96	19.69	500yr	15.89	18.93	20.82	21.80	23.96	500yr

National Cooperative Soil Survey

Conservation Service

MAP	LEGEND	MAP INFORMATION
Area of Interest (AOI) Area of Interest (AOI) Soils	Spoil Area	The soil surveys that comprise your AOI were mapped at 1:15,800.
 Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points Special Point Features Blowout 	Image: Wery Stony Spot Image: Wery Stony S	Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map
Clay Spot	Transportation +++ Rails Comparison Rails	measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
Gravel Pit Gravelly Spot Landfill Lava Flow	US Routes US Routes Major Roads Local Roads	Maps from the Web Soil Survey are based on the Web Mercato projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
Marsh or swamp Mine or Quarry Miscellaneous Water	Background Aerial Photography	This product is generated from the USDA-NRCS certified data a of the version date(s) listed below. Soil Survey Area: Orange County, New York Survey Area Data: Version 20, Sep 16, 2019
 Perennial Water Rock Outcrop Saline Spot 		Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Oct 7, 2013—Feb 2 2017
Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot		The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Ab	Alden silt loam	0.3	12.4%
НоВ	Hoosic gravelly sandy loam, 3 to 8 percent slopes	1.3	56.8%
HoC	Hoosic gravelly sandy loam, 8 to 15 percent slopes	0.7	28.4%
W	Water	0.1	2.4%
Totals for Area of Interest	1	2.3	100.0%

APPENDIX 3 CURVE NUMBER CALCULATIONS

TONGINE	RING		CURVE	NUMBE	R (CN)	
A SURVEY ROPER	ÝING TIFS		WC	ORKSHE	ET	
Achieving Success with Innovative	ful Results	WO. NO.	DATE	REVISED	SHEET	OF
PROJECT TITLE		1246.01 LOCATION	01/14/22		1	6
Donnelly - Sugarloaf		Town of Cl				
CALCULATED BY	APPROVED BY	REF DRAW	/ING(S)			
MP	RW					
1. Runoff curve num	<u>ber (CN)</u>	Existing	Proposed	Subarea:	EX	(-A
				Area	Prod	uct of
Soil Name &	Cover Description	litiona)	CN	Area		Area
Hydrologic Group	(cover type, treatment & conc	illions)		(acres)		Alea
	Impervious Areas			0.55		50.00
D	Paved Parking Lots, Roofs & D	riveways	98	0.55		53.90
Δ.	Lawn - Poor Condition		68	0.44		29.92
A D	Lawn - Poor Condition		89	0.44		29.92
D	Lawii - Pool Colidition		09	0.00		
A	Woods - Fair Condition		36	0.11		3.96
A	Woods - Fair Condition		79	0.00		5.50
D			19	0.00		
			TOTAL =	1.10	87	.78
CN (wei	ghted) = <u>total product</u>	- =	87.78			
	total area		1.1			
CN (wei	ghted) = 79.800	Use CN=	80			
	,					
2. Runoff					S =	2.50
	Storm #1 Storm #2	Storm #3				
Frequency	yr					
Rainfall, P	in in					
Runoff, Q (Use P ar	in nd CN with table 2-1, fig 2-1, or eqns	2-3 and 2-4)			
			/			

TNGINEE	RING	CURVE NUMBER (CN)								
& SURVEY ROPER			WC	ORKSHE	ET					
Achieving Success with Innovative	oful Results	WO. NO. 1246.01	DATE 01/14/22	REVISED	SHEET 2	OF 6				
PROJECT TITLE	<u> </u>	LOCATION			۷	0				
Donnelly - Sugarloaf		Town of Ch	hester							
CALCULATED BY MP	APPROVED BY RW	REF DRAW	/ING(S)							
		<u> </u>								
1. Runoff curve num	<u>ber (CN)</u>	Existing	Proposed	Subarea:	E	(-В				
	Cover Description			Area	Prod	uct of				
Soil Name & Hydrologic Group	(cover type, treatment & cond	litions)	CN	(acres)		Area				
	Impervious Areas			(40100)	-					
D	Paved Parking Lots, Roofs & Dr	riveways	98	0.04		3.92				
		Iveways	30	0.04		0.02				
Α	Lawn - Poor Condition		68	0.34		23.12				
A	Lawn - Poor Condition		89	0.34		17.80				
			03	0.20		17.00				
Α	Woods - Fair Condition		36	0.99		35.64				
D	Woods - Fair Condition		79	0.14		11.06				
	1									
	1									
	1									
			TOTAL =	1.71	91	.54				
	total product		91.54							
CN (wei	ghted) = total product total area	- =	1.71							
	lutai area		1.7 1							
CN (wei	~htad) - 52 522	Use CN=	54							
	ghted) = 53.532		74							
2. Runoff			_		S =	8.52				
	Storm #1 Storm #2	Storm #3								
Frequency										
Rainfall, P Runoff, Q	in i									
-	nd CN with table 2-1, fig 2-1, or eqns.	. 2-3 and 2-4)							

	RING	CURVE NUMBER (CN)							
& SURVEY ROPER'			WC	ORKSHE	ET				
Achieving Success with Innovative	ful Results Designs	WO. NO. 1246.01	DATE 01/14/22	REVISED	SHEET 3	OF 6			
PROJECT TITLE		LOCATION				-			
Donnelly - Sugarloaf CALCULATED BY	APPROVED BY	Town of Cl REF DRAW							
MP	RW								
1. Runoff curve num	<u>ber (CN)</u>	Existing	Proposed	Subarea:	PF	R-A			
Soil Name &	Cover Description			Area	Prod	uct of			
Hydrologic Group	(cover type, treatment & cond	litions)	CN	(acres)	CN x	Area			
	Impervious Areas								
	Paved Parking Lots, Roofs & Dr	riveways	98	0.60		58.80			
					<u> </u>				
A	Lawn - Good Condition		39	0.15	<u> </u>	5.85			
D	Lawn - Good Condition		80	0.00					
Α	Woods - Fair Condition		36	0.00					
D	Woods - Fair Condition		79	0.00					
					<u> </u>				
	 				<u> </u>				
	<u> </u>		TOTAL =	0.75	64	.65			
CN (woi	abtod) - total product	- =	64.65						
ΟΙΝ (ΜΟΙζ	ghted) =total area		0.75						
CN (weię	ghted) = 86.200	Use CN=	86						
2. Runoff					S =	1.63			
	Storm #1 Storm #2	Storm #3	1		-				
Frequency	yr	<u> </u>	1						
Rainfall, P Runoff, Q	in in	+							
	nd CN with table 2-1, fig 2-1, or eqns.	. 2-3 and 2-4)						

CNGINEE & SURVEY	RING		CURVE NUMBER (CN)								
& SURVEY				WC	ORKSHE	ET					
Achieving Success with Innovative	ful Results Designs		WO. NO. 1246.01	DATE 01/14/22	REVISED	SHEET 4	OF 6				
PROJECT TITLE			LOCATION				U				
Donnelly - Sugarloaf CALCULATED BY	APPROVED BY		Town of Ch REF DRAW								
MP	RW										
<u>1. Runoff curve num</u>	ber (CN)		Existing	Proposed	Subarea:	PR	-B1				
Soil Name &	Cover Desc	cription			Area	Prod	uct of				
Hydrologic Group	(cover type, treatme	•	itions)	CN	(acres)	CN x	Area				
	Impervious	Areas									
	Paved Parking Lots, R	Roofs & Dr	iveways	98	0.73		71.54				
A	Lawn - Good			39	0.20		7.80				
D	Lawn - Good	Condition		80	0.05		4.00				
Α	Woods - Fair	Condition		36	0.00						
D	Woods - Fair			79	0.00						
				TOTAL =	0.98	83	.34				
			I		* • • •						
	total prod	duct		83.34							
CN (wei	ghted) =total an		. = .	0.98							
CN (wei	ghted) = 85.041		Use CN=	85							
<u>2. Runoff</u>				I		S =	1.76				
Frequency	Storm #1 S	Storm #2	Storm #3								
Rainfall, P	in										
Runoff, Q	in nd CN with table 2-1, fig 2-1	or eans	2-3 and 2-4								
(Use P al	Id CN with table 2-1, lig 2-1	, or equis.	2-3 anu 2-4)							

TNGINEE	RING	CURVE NUMBER (CN)								
ROPF R			WC	ORKSHE	ET					
Achieving Success with Innovative	ful Results Designs	WO. NO. 1246.01	DATE 01/14/22	REVISED	SHEET 5	OF 6				
PROJECT TITLE		LOCATION				-				
Donnelly - Sugarloaf CALCULATED BY	APPROVED BY	Town of Cl REF DRAW								
MP	RW									
1. Runoff curve num	<u>ber (CN)</u>	Existing	Proposed	Subarea:	PR	-B2				
Soil Name &	Cover Description			Area	Prod	uct of				
Hydrologic Group	(cover type, treatment & cond	lition <u>s)</u>	CN	(acres)	CN x	Area				
	Impervious Areas									
	Paved Parking Lots, Roofs & Dr	riveways	98	0.41		40.18				
A	Lawn - Good Condition		39	0.13		5.07				
D	Lawn - Good Condition	1	80	0.00						
Α	Woods - Fair Condition		36	0.00						
D	Woods - Fair Condition		79	0.00						
					<u> </u>					
					<u> </u>					
			TOTAL =	0.54	45	.25				
CN (wei	ghted) =total product	_ =	45.25							
	total area		0.54							
CN (wei	ghted) = 83.796	Use CN=	84							
2. Runoff		T	1		S =	1.90				
Frequency	<u>Storm #1</u> Storm #2 yr	Storm #3								
Rainfall, P	in									
Runoff, Q	in		ļ							
(Use P ar	nd CN with table 2-1, fig 2-1, or eqns.	. 2-3 and 2-4	·)							

TINGINEE	ERING			CURVE NUMBER (CN)								
& SURVE	TIES				WC	ORKSHE	ET					
Achieving Succes with Innovative	sful Results Designs	 ر		WO. NO. 1246.01	DATE 01/14/22	REVISED	SHEET 6	OF 6				
PROJECT TITLE				LOCATION								
Donnelly - Sugarloaf CALCULATED BY	APPROVE	רי RY		Town of Cl REF DRAW								
MP	RW											
1. Runoff curve nun	nber (CN)	_		Existing	Proposed	Subarea:	PR	-B3				
						· · · · · · · · · · · · · · · · · · ·	Drad					
Soil Name &	(escription		CN	Area		uct of				
Hydrologic Group	(COV	er type, treatr		itions)		(acres)		Area				
	Deved		ous Areas	• • • • • • • • • • • • • • • • • • • •	00	0.00						
	Paveu	Parking Lots	, Roots & Di	iveways	98	0.00						
A	+	Lawn - Gor	od Condition		39	0.29	 	11.31				
D	-		od Condition		80	0.29		11.20				
		Lumi Coo				0.11		11.20				
A		Woods - Fa	air Condition		36	0.04		1.44				
D		Woods - Fa	air Condition		79	0.06		4.74				
				_								
	_											
					ļ							
						0.53	28	.69				
					TOTAL =	0.00	20	.09				
		total r	product		28.69							
CN (we	eighted) =		l area	- =	0.53	i						
			uica		0.00							
CN (we	eighted) =	54.132		Use CN=	54							
	ignica)	J7.102			57							
2. Runoff				1	1		S =	8.52				
Frequency		Storm #1	Storm #2	Storm #3								
Frequency Rainfall, P			 									
Runoff, Q	in				ĺ							
(Use P a	and CN with t	table 2-1, fig 2	2-1, or eqns.	2-3 and 2-4)							

APPENDIX 4

TIME OF CONCENTRATION

CALCULATIONS

TNGINEERING		TIN	ME OF C	CONCEN	ITRATI	NC
& SURVEYING			(Tc) V	VORKSI	HEET	
Achieving Successful Results		WO. NO.	DATE	REVISED	SHEET	OF
Achieving Successful Results with Innovative Designs		1246.01	01/14/22		1	6
PROJECT TITLE Donnelly - Sugarloaf		LOCATION Town of C				
CALCULATED BY APPROVED BY		REF DRAV	VING(S)			
MP RW		DWG LAS	T REV. 1/8/	20		
	Existing	Proposed	Area:		EX-A	
1. <u>Sheet Flow</u>	Segment ID	A-B	B-C	C-D		
Surface Description (table 3.1)		Paved	Grass: D	Paved		
Surface Description (table 3-1) Manning's roughness coeff., 'n' (table 3-1)		0.01	0.24	0.01		
Flow length, L (total L \leq 300 ft)	ft	4	83	13		
Two-year 24-hour rainfall, P_2	in	3.22	3.22	3.22		
Land Slope, s	ft/ft	0.036	0.036	0.036		
$T_{t} = \frac{0.007 (nL)^{0.8}}{P_{0}^{0.5} s^{0.4}}$	hr	0.001	0.161	0.003		0.166
$P_2^{0.5} s^{0.4}$		0.001	0.101	0.000		01100
2 Shallow Concentrated Flow	Segment					1
2. <u>Shallow Concentrated Flow</u>	ID	D-E	E-F			
Surface description (paved or unpaved)		Unpaved	Unpaved			
Flow length, L	ft	61.5	46.4			
Watercourse slope, s	ft/ft	0.110	0.040			
Average velocity, V (figure 3-1)	ft/s	5.351	3.227			
$T_t = \frac{L}{3600 \text{ V}}$	hr	0.003	0.004			0.007
3. <u>Channel Flow</u>	Segment					1
5. <u>onamer now</u>	ID					
Cross sectional flow area, a	ft ²					
Wetted perimeter, p _w	ft					
Hydraulic radius, r = a/p _w	ft					
Channel slope, s	ft/ft					
Manning's roughness coefficient, n						
$V = \frac{1.49 r^{2/3} s^{1/2}}{1.49 r^{2/3} s^{1/2}}$	ft/s					
n v	105					
Flow Length, L	ft					
$T_t = \frac{L}{3600 V}$	hr					
						•
Total Tc For Watershed o	or Subarea	(Add Ste	eps 6, 11	, and 19)	hr =	0.17
					min =	10.20

		TI				ON
		WO. NO.	DATE	VORKS		OF
Achieving Successful Results with Innovative Designs		1246.01	01/14/22	REVISED	SHEET 2	6 0
PROJECT TITLE		LOCATION			_	•
Donnelly - Sugarloaf		Town of C				
CALCULATED BY APPROVED BY RW		REF DRAV	VING(S) T REV. 1/8	/20		
		DITO LAO		20		
	Existing	Proposed	Area:		EX-B	
1. <u>Sheet Flow</u>	Segment	A-B	B-C]
	ID					
Surface Description (table 3-1)		Grass: D	Grass: D			-
Manning's roughness coeff., 'n' (table 3-1)	ft	0.24 62	0.24 62			-
Flow length, L (total L <u><</u> 300 ft) Two-year 24-hour rainfall, P ₂	in	62 3.22	3.22			
Land Slope, s	ft/ft	0.090	0.200			-
	10/11	0.090	0.200			
$T_{t} = \frac{0.007 (nL)^{0.8}}{P_{2}^{0.5} s^{0.4}}$	hr	0.089	0.064			0.153
_						
2. Shallow Concentrated Flow	Segment ID	C-D				
Surface description (paved or unpaved)		Unpaved				
Flow length, L	ft	102.8				
Watercourse slope, s	ft/ft	0.044				
Average velocity, V (figure 3-1)	ft/s	3.384				
$T_t = \frac{L}{3600 \text{ V}}$	hr	0.008				0.008
			[[1
3. <u>Channel Flow</u>	Segment ID					
Cross sectional flow area, a	ft ²]
Wetted perimeter, p _w	ft					
Hydraulic radius, r = a/p _w	ft					
Channel slope, s	ft/ft					
Manning's roughness coefficient, n						-
$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$	ft/s					
						-
Flow Length, L	ft					
$T_t = \frac{L}{3600 \text{ V}}$	hr					
Total Tc For Watershed o	or Subarea	(Add Ste	eps 6, 11	, and 19)	hr =	0.16
					min =	9.60

& SURVEYING (Tc) WORKSHEET Achieving Successful Results WO. NO. DATE WO. NO. DATE REVISED SHEET 1246.01 01/14/22 PROJECT TITLE LOCATION Donnelly - Sugarloaf Town of Chester CALCULATED BY APPROVED BY REF DRAWING(S)	r OF 6
Achieving Successful Results WO. NO. DATE REVISED SHEE MO. NO. DATE REVISED SHEE 1246.01 01/14/22 3 PROJECT TITLE LOCATION Donnelly - Sugarloaf Town of Chester CALCULATED BY APPROVED BY REF DRAWING(S)	
PROJECT TITLE LOCATION Donnelly - Sugarloaf Town of Chester CALCULATED BY APPROVED BY	6
Donnelly - SugarloafTown of ChesterCALCULATED BYAPPROVED BYREF DRAWING(S)	
CALCULATED BY APPROVED BY REF DRAWING(S)	
MP RW DWG LAST REV. 1/8/20	
Existing Proposed Area: PR-A	
1. <u>Sheet Flow</u> Segment A-B ID	
Surface Description (table 3-1) Grass: D	
Manning's roughness coeff., 'n' (table 3-1) 0.24	
Flow length, L (total L \leq 300 ft) ft 100	_
Two-year 24-hour rainfall, P_2 in 3.50	
Land Slope, s ft/ft 0.030	
$0.007 (nl)^{0.8}$	0.400
$T_t = \frac{0.007 (hL)}{P_2^{0.5} s^{0.4}}$ hr 0.193	0.193
2. <u>Shallow Concentrated Flow</u> Segment B-C C-D ID	
Surface description (paved or unpaved) Unpaved Unpaved	
Flow length, L ft 38.4 323.7	
Watercourse slope, s ft/ft 0.033 0.050	
Average velocity, V (figure 3-1) ft/s 2.931 3.608	
$T_t =L$ hr 0.004 0.025	0.029
$T_t = \frac{L}{3600 \text{ V}}$ hr 0.004 0.025	0.029
· · · · · · · · · · · · · · · · · · ·	
3. <u>Channel Flow</u> Segment	
ID III III III III III III III III III	
Cross sectional flow area, a ft ²	_
Wetted perimeter, p _w ft	_
Hydraulic radius, $r = a/p_w$ ft	
Channel slope, s ft/ft	_
Manning's roughness coefficient, n	
$V = \frac{1.49 r^{2/3} s^{1/2}}{n} $ ft/s	
	_
Flow Length, L ft	
$T_{t} = \frac{L}{3600 \text{ V}} \text{ hr}$	
Total Tc For Watershed or Subarea (Add Steps 6, 11, and 19) hr =	0.22
min =	13.20

ENGINEERING & SURVEYING		TIN				NC
ROPERTIES			· /	VORKSI		
Achieving Successful Results with Innovative Designs		WO. NO. 1246.01	DATE 01/14/22	REVISED	SHEET 4	OF 6
PROJECT TITLE		LOCATION				U
Donnelly - Sugarloaf		Town of C				
CALCULATED BY APPROVED BY RW		REF DRAV DWG LAS		/20		
		DWG LAS	I REV. 1/0	/20		
	Existing	Proposed	Area:		PR-B1	
						1
1. <u>Sheet Flow</u>	Segment	A-B	B-C			
	ID					
Surface Description (table 3-1)		Grass: D	Paved			
Manning's roughness coeff., 'n' (table 3-1)		0.24	0.01			
Flow length, L (total L \leq 300 ft)	ft	87	13			
Two-year 24-hour rainfall, P_2	in	3.50	3.50			
Land Slope, s	ft/ft	0.030	0.050			
$T_{t} = \frac{0.007 (nL)^{0.8}}{P_{0}^{0.5} s^{0.4}}$	hr	0.173	0.003			0.176
F_2 S						
2. Shallow Concentrated Flow	Segment					1
2. Shallow Concentrated Flow	ID	C-D	D-E			
Surface description (paved or unpaved)		Unpaved	Unpaved			
Flow length, L	ft	7.0	29.0			
Watercourse slope, s	ft/ft	0.010	1.000			
Average velocity, V (figure 3-1)	ft/s	1.613	16.135			
						0.000
$T_t = \frac{L}{3600 \text{ V}}$	hr	0.001	0.000			0.002
3. <u>Channel Flow</u>	Segment					
	ID					
Cross sectional flow area, a	ft ²					
Wetted perimeter, p _w	ft					
Hydraulic radius, r = a/p _w	ft					
Channel slope, s	ft/ft					
Manning's roughness coefficient, n						
$V = \frac{1.49 r^{2/3} s^{1/2}}{1.49 r^{2/3} s^{1/2}}$	ft/s					
n						
Flow Length, L	ft					
$T_t = \frac{L}{3600 V}$	hr					
3600 V						
_						_
Total Tc For Watershed o	r Subarea	(Add Ste	eps 6, 11	, and 19)	hr =	0.18
					min =	10.80

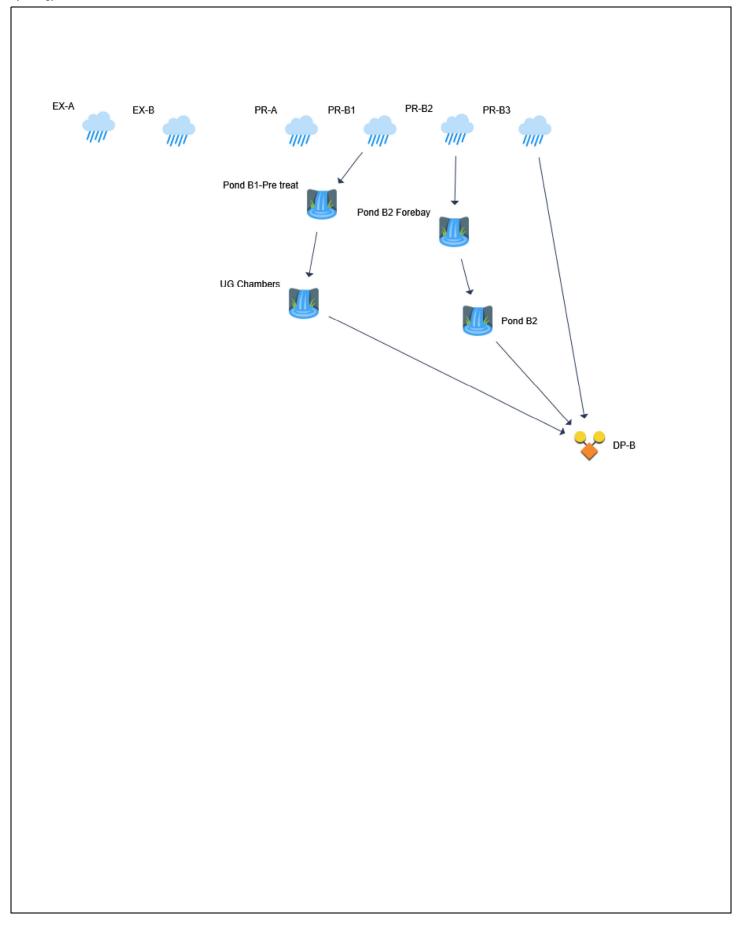
ROPERTIES		TIN		ONCENTRA	
Achieving Successful Results with Innovative Designs		WO. NO. 1246.01	DATE 01/14/22	REVISED SHE	
PROJECT TITLE		LOCATION		5	0
Donnelly - Sugarloaf CALCULATED BY APPROVED BY		Town of C REF DRAV			
MP RW			T REV. 1/8/	20	
	Existing	Proposed	Area:	PR-I	B2
1. <u>Sheet Flow</u>	Segment ID	A-B	B-C		
Surface Description (table 3-1)		Grass: D	Paved		
Manning's roughness coeff., 'n' (table 3-1)		0.24	0.01		
Flow length, L (total L \leq 300 ft)	ft	13	87		
Two-year 24-hour rainfall, P ₂	in ft/ft	3.50	3.50 0.020		
Land Slope, s 0.007 (nl.) ^{0.8}		0.200			
$T_{t} = \frac{0.007 (nL)^{0.8}}{P_{2}^{0.5} s^{0.4}}$	hr	0.018	0.017		0.035
2. <u>Shallow Concentrated Flow</u>	Segment ID	C-D	D-E		
Surface description (paved or unpaved)		Paved	Unpaved		
Flow length, L	ft	58.0	57.0		
Watercourse slope, s	ft/ft	0.020	0.500		
Average velocity, V (figure 3-1)	ft/s	2.875	11.409		
$T_t = \frac{L}{3600 \text{ V}}$	hr	0.006	0.001		0.007
3. <u>Channel Flow</u>	Segment ID				
Cross sectional flow area, a	ft ²				
Wetted perimeter, p_w	ft				
Hydraulic radius, r = a/p _w	ft				
Channel slope, s	ft/ft				
Manning's roughness coefficient, n					
$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$	ft/s				
	<i>c</i> ,				
Flow Length, L	ft				
$T_t = \frac{L}{3600 V}$	hr				
		I		ľ	
Total Tc For Watershed o	r Subarea	(Add Ste	eps 6, 11,	and 19) hr =	= 0.04
				min	= 2.40
			USE M	INIMUM TC OF	F 6 MINUTES

TNGINEERING		TIM	IE OF C	ONCEN	ITRATI	NC
& SURVEYING			(Tc) V	VORKSI	HEET	
Achieving Successful Results		WO. NO.	DATE			OF
			01/14/22		6	6
			ostor			
MP RW				20		
Large View Number Strangton 1246.01 01/14/22 6 DIECT TITLE LOCATION nelly - Sugarloaf COULATED BY APPROVED BY REF DRAWING(S) DWG LAST REV. 1/8/20 Existing Proposed Area: PR-B3 Segment ID Surface Description (table 3-1) A-B 10 Manning's roughness coeff., in' (table 3-1) ft 100 100 Flow Length, L (total 4.5 300 ft) ft 100 100 100 Land Slope, s T ₁ = $-\frac{0.007}{P_g^{0.5} s^{0.4}}$ hr 0.221 100 Surface description (paved or unpaved) ft ft 5.7 10 Surface description (paved or unpaved) ft ft/s 0.020 100 100 Flow length, L T ₁ = $-\frac{L}{3600 V}$ hr 0.001 100 100 Stafface description (paved or unpaved) ft ft 0.001 100 100 T ₁ = $-\frac{L}{3600 V}$ hr 0.001 100 100 100 100 Cross sectional flow area, a ft/s 12.00 100 100 100						
	Existing	Proposed	Area:		PR-B3	
						_
1. <u>Sheet Flow</u>	-	А-В				
Surface Description (table 3-1)		Woods: L				
		0.40				
	ft	100				
Two-year 24-hour rainfall, P ₂	in	3.50				
Land Slope, s	ft/ft	0.060				
$T_t = \frac{0.007 (nL)^{0.8}}{P_c^{0.5} s^{0.4}}$	hr	0.221				0.221
12 3						
2. Shallow Concentrated Flow	-	B-C				
Surface description (paved or unpaved)		Unpayed				
	ft					
•						
	hr	0.001				0.001
3600 V						
3. <u>Channel Flow</u>	Segment	C-D]
		0-0				
Cross sectional flow area, a						
Hydraulic radius, r = a/p _w	ft	0.06				
•	ft/ft					
		0.012				
$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$	ft/s	3.009				
Flow Length, L	ft					
$T_t = \frac{L}{3600 V}$	hr	0.000				0.000
		<u> </u>				·
Total Tc For Watershed o	r Subarea	(Add Ste	ps 6, 11,	and 19)	hr =	0.22
					min =	13.20

APPENDIX 5 WATER QUALITY VOLUME & RUNOFF REDUCTION VOLUME CALCULATIONS

T NGI	NEERIN	G		WAT	ER QUA	LITY VC	DLUME (NQ _v)	
	URVEYING	2		CALCULATION SHEET					
	Successful Resul			WO. NO. 1246.01	DATE 01/14/22	REVISED	SHEET 1	OF 2	
PROJECT TITL	E			LOCATION		•			
Donnelly - Sug				Town of C					
CALCULATED MP	BY	APPROVED BY RW		Stormwater	Manageme	ent Design F	Point Design	ation	
) = / D * D		<u> </u>				
		VVC		,*A)/(12))				
			90% Deinfell	Total	Total	R _v	WQ_v	WQv	
	Drainage Area		Rainfall Event #	Drainage	Imperviou	(0.05 +	Required	Required	
	(P)				s Area (I)	0.009*1%)	(Ac-ft)	(ft ³)	
	DP-B		1.40	2.31	1.14	0.494	0.133	5,793.5	
HSG	Area (Ac.)	%	S				5 * S * I) / (′		
A	2.02	87%	0.55	P =	1.40				
В				S =					
	0.00	0%	0.40		0.51				
С	0.00	0%	0.30	=					
D	0.29	13%	0.20	$RR_{v MIN}$	0.064	Ac-ft			
			Implem	nented ?	Drainage	Contributing Drainage	Total Drainage	Total Impervious	
Green Technology			Yes	No	Area Reduction	Area Reduction	Area Reduction	Area Reduction	
Area Reduction	Practices								
Conservation	of Natural Areas			V	-	-	-	-	
	Riparian Buffers			~	-	_	-	-	
Tree Planting	•					_			
g	,		and and a second	Subtotals			0.00	0.00	
			Р	A	-	R _v	WQ _v		
Revised W	VQ _v after Area D	Deductions	1.40	2.31	1.14	0.494	0.133	0.000	
Disconnection o	of Rooftop Runof	f		vious Area R		0.00		0.000	
Disconnection		•	P	A		R _v	WQ _v		
Revised WQ_v	after Imperviou	us Disconnect	1.40	2.31	1.14	0.494	0.133	0.000	
Source Control	WQ _v Treatment	Practices						(I) Reduction	
	-	Fractices	Yes	No V	WQ _v	RR _{v sc} *	(A) Reduction	(I) Reduction	
Vegetated Op Rain Garden	en Swales			▼ ▼	-	-	-	-	
Green Roof					-	-	-	-	
Stormwater Pl	lanters			<u>v</u>	-	-	-	-	
Rain Tanks / 0				▼	-	-	-	-	
Porous Paven				<u>v</u>	-	-	-	-	
		oitr		v	-	-	-	-	
	s with RRv Capa	ыу		-	0.000	0.074	0.00	0.70	
Infiltration			N		0.082	0.074	0.98	0.73	
Bio-Retention					-	-	-	-	
Dry Swale (Op	ben Channel)				-	-	-	-	
				Subtotals		0.074	0.98	0.73	
Is The Total F	$RR_{v}(RR_{vAREA} +)$	$RR_{v IMP} + RR_{v SC}$	0.074	<u>></u> RR	_{v MIN} ?	0.064	YE	S	
WQ _v Requi	ired by Standar	d Practices	Р	Α	I	R _v	WQ _v (Ac-ft)	WQ_v (ft ³)	
			1.40	1.33	0.41	0.327	0.051	2,213.2	
* For Source Contro	l (if used) RRv calcu	lations see attached	Green Techno	logy RRv Calcu	lation Sheets				

ENGINEER & SURVEYI DROPERT	RING TIES				LATION	SHEET	
Achieving Successfu with Innovative D	ll Results e signs		WO. NO. 1246.01	DATE 01/14/22	REVISED	SHEET 2	OF 2
PROJECT TITLE Donnelly - Sugarloaf			LOCATION Town of C				
CALCULATED BY	APPROVED B	Y	Stormwater	Managemer	nt Design Po	oint Designa	tion
MP	RW		DP-B				
		INFILTRATIO	N PRACT	ICES			
Requirement CI	<u>necks</u>	<u>Yes</u>	<u>No</u>	<u>Notes:</u>			
Infiltration rate $(k) \ge 0.5$	/hr	\checkmark					
Pretreatment provided		\checkmark					
Design Complies with Re Elements of Practice	equired	\checkmark					
Infiltration designed to ex bottom of practice only?	filtrate through	\checkmark					
Drainage Area (Ac.)	0.98						
Impervious Area (Ac.)	0.73						
Rainfall Event # (P)	1.40						
Rv	0.720						
WQv _{REQ'D}	0.082						
A_t (ft ²)		Surface area of		rench			
d _t (ft)		depth of trench					
n N (193)	0.400	porosity					
V_t (ft ³)		Design Volume	of Trench (vvQ _v Provide	a)		
V _t > WQv _{REQ'D}							
A _b (ft ²)	2,269.0	Surface area of	f infiltration b	basin			
D _b (ft)	3	depth of basin					
V _b (ft ³)	6,807.0	Design Volume	of basin (W	Q _v Provided))		
V _b (ac-ft)	0.156	Design Volume	of basin (W	Q _v Provided))		
$V_t > WQv_{REQ'D}$	YES						
RRv	0.074]					


APPENDIX 6

<u>HYDROGRAPH</u>

SUMMARIES & DIAGRAMS

Basin Model

01-14-2022

Hydrograph by Return Period

0	1-14	-20	22

Hyd. Hydrograph	Hydrograph				Peak Out	flow (cfs)					
No. Туре	Name	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr		
1 NRCS Runoff	EX-A	1.034				2.886			6.401		
2 NRCS Runoff	EX-B	0.024				1.109			5.261		
3 NRCS Runoff	PR-A	1.005				2.376			4.804		
4 NRCS Runoff	PR-B1	1.244				3.021			6.198		
5 NRCS Runoff	PR-B2	0.760				1.879			3.890		
6 NRCS Runoff	PR-B3	0.007				0.318			1.505		
7 Pond Route	Pond B1-Pre treat	1.244				3.000			6.142		
8 Pond Route	UG Chambers	0.000				0.665			3.334		
9 Pond Route	Pond B2 Forebay	0.613				1.696			3.648		
10 Pond Route	Pond B2	0.017				0.037			0.373		
11 Junction	DP-B	0.022				0.939			4.606		

APPENDIX 7

EXISTING 1-, 10-, 100-YEAR

DESIGN STORM

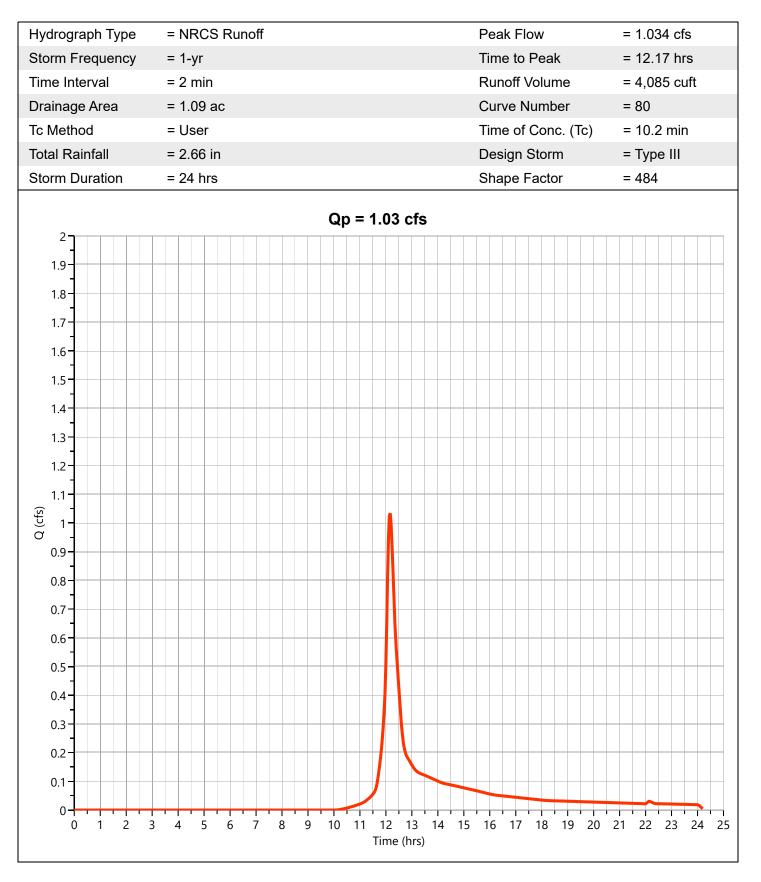
<u>HYDROGRAPHS</u>

Hydrograph 1-yr Summary

01-14-2022

lyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	EX-A	1.034	12.17	4,085			
2	NRCS Runoff	EX-B	0.024	12.53	599			
3	NRCS Runoff	PR-A	1.005	12.13	3,861			
4	NRCS Runoff	PR-B1	1.244	12.13	4,795			
5	NRCS Runoff	PR-B2	0.760	12.07	2,281			
6	NRCS Runoff	PR-B3	0.007	13.67	191			
7	Pond Route	Pond B1-Pre treat	1.244	12.17	4,575	4	507.06	2,276
8	Pond Route	UG Chambers	0.000	12.53	0.000	7	507.19	133
9	Pond Route	Pond B2 Forebay	0.613	12.13	1,784	5	511.04	8,170
10	Pond Route	Pond B2	0.017	18.10	1,255	9	508.46	1,710
11	Junction	DP-B	0.022	15.17	1,447	6, 8, 10		

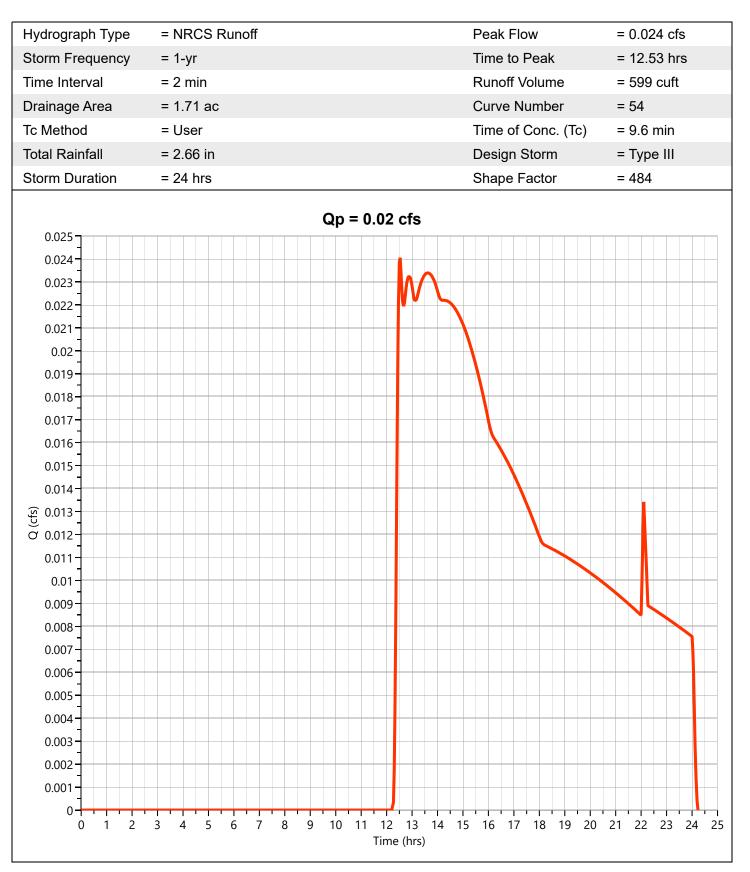
Hydrograph Report


Hydrology Studio v 3.0.0.21

EX-A

Project Name: Donnelly - Sugarloaf

01-14-2022


Hyd. No. 1

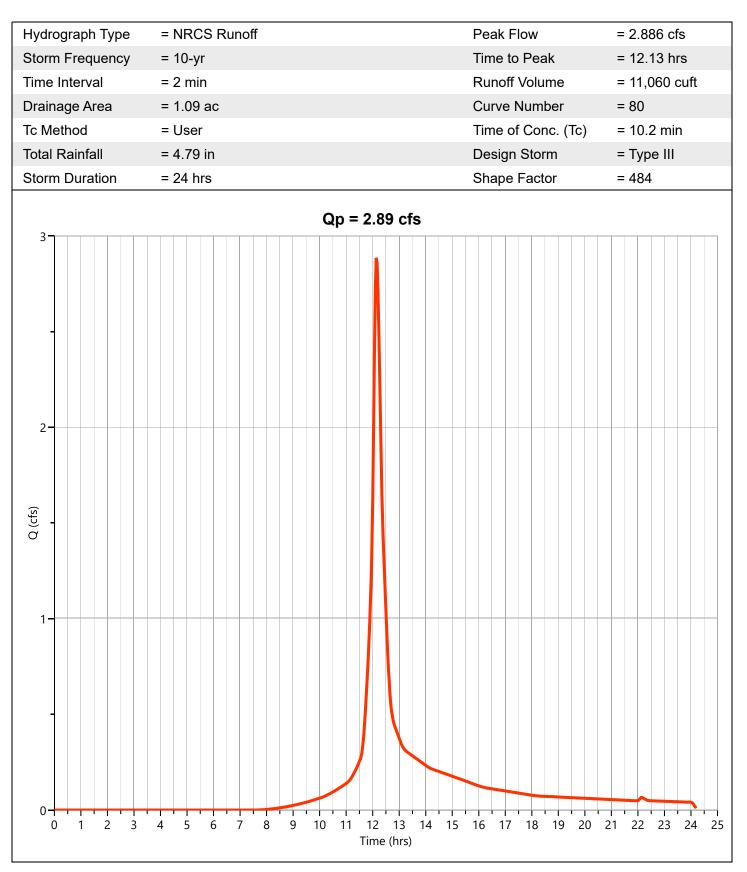
Hydrology Studio v 3.0.0.21

EX-B

01-14-2022

Hydrograph 10-yr Summary

Project Name: Donnelly - Sugarloaf

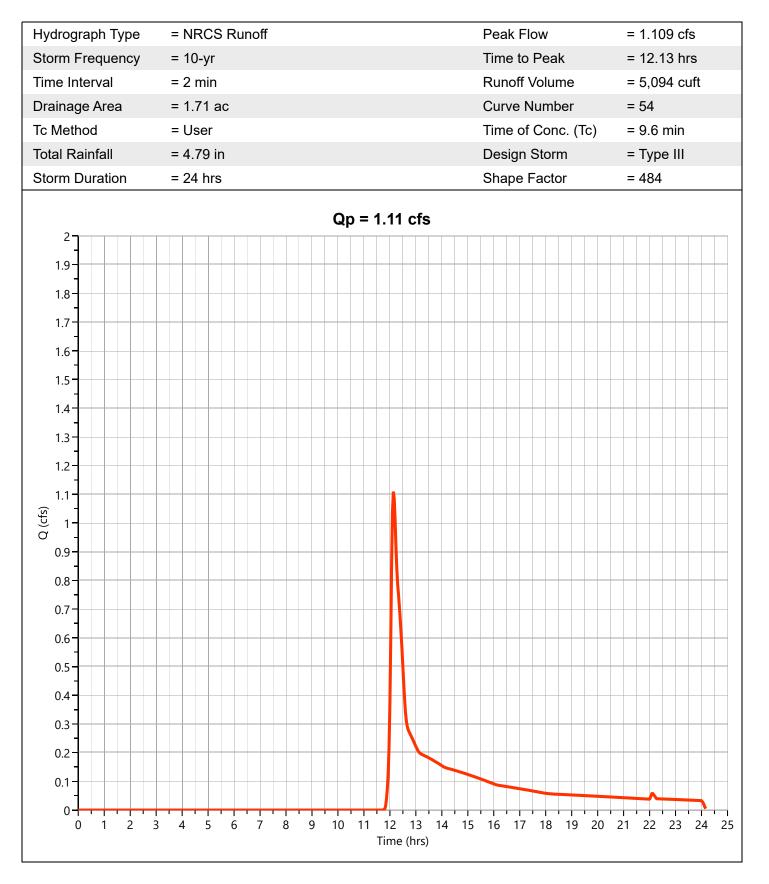

01-14-2022

Hyd.	udio v 3.0.0.21 Hydrograph	Hydrograph	Peak Flow	Time to Peak	Hydrograph Volume	Inflow Hyd(s)	Maximum Elevation	Maximum Storage
No.	Туре	Name	(cfs)	(hrs)	(cuft)	yu(ə)	(ft)	(cuft)
1	NRCS Runoff	EX-A	2.886	12.13	11,060			
2	NRCS Runoff	EX-B	1.109	12.13	5,094			
3	NRCS Runoff	PR-A	2.376	12.13	9,185			
4	NRCS Runoff	PR-B1	3.021	12.13	11,646			
5	NRCS Runoff	PR-B2	1.879	12.07	5,658			
6	NRCS Runoff	PR-B3	0.318	12.20	1,628			
7	Pond Route	Pond B1-Pre treat	3.000	12.17	11,425	4	507.15	2,369
8	Pond Route	UG Chambers	0.665	12.37	592	7	508.79	1,828
9	Pond Route	Pond B2 Forebay	1.696	12.10	5,160	5	511.11	8,345
10	Pond Route	Pond B2	0.037	17.90	4,632	9	510.07	4,312
11	Junction	DP-B	0.939	12.37	6,852	6, 8, 10		

Hydrology Studio v 3.0.0.21

EX-A

01-14-2022



Hydrology Studio v 3.0.0.21

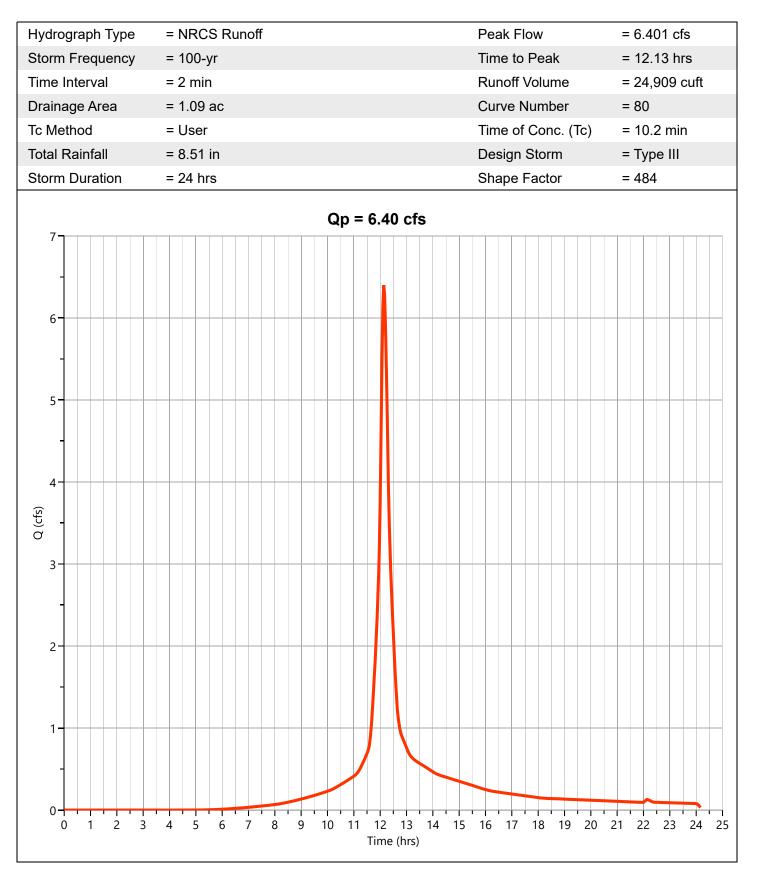
EX-B

Project Name: Donnelly - Sugarloaf

01-14-2022

Hydrograph 100-yr Summary

Project Name: Donnelly - Sugarloaf

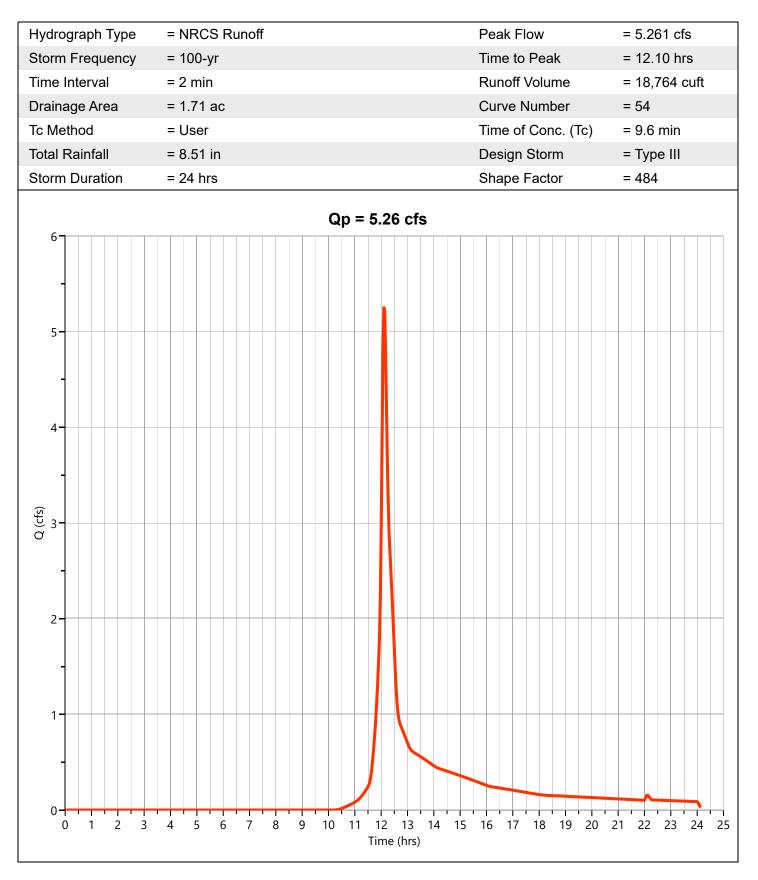

Hyd. Hy No. Tyj	drograph De	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1 NR	CS Runoff	EX-A	6.401	12.13	24,909			
2 NR	CS Runoff	EX-B	5.261	12.10	18,764			
3 NR	CS Runoff	PR-A	4.804	12.13	19,166			
4 NR	CS Runoff	PR-B1	6.198	12.13	24,602			
5 NR	CS Runoff	PR-B2	3.890	12.07	12,103			
6 NR	CS Runoff	PR-B3	1.505	12.17	5,998			
7 Po	nd Route	Pond B1-Pre treat	6.142	12.13	24,382	4	507.27	2,507
8 Po	nd Route	UG Chambers	3.334	12.30	6,004	7	510.14	3,510
9 Po	nd Route	Pond B2 Forebay	3.648	12.10	11,605	5	511.22	8,615
10 Po	nd Route	Pond B2	0.373	12.90	11,057	9	511.22	7,746
	nction			12.23	23,059	6, 8, 10		

Hydrology Studio v 3.0.0.21

EX-A

Project Name: Donnelly - Sugarloaf

01-14-2022



Hydrology Studio v 3.0.0.21

EX-B

Project Name: Donnelly - Sugarloaf

01-14-2022

APPENDIX 8

PROPOSED 1-, 10-, 100-YEAR

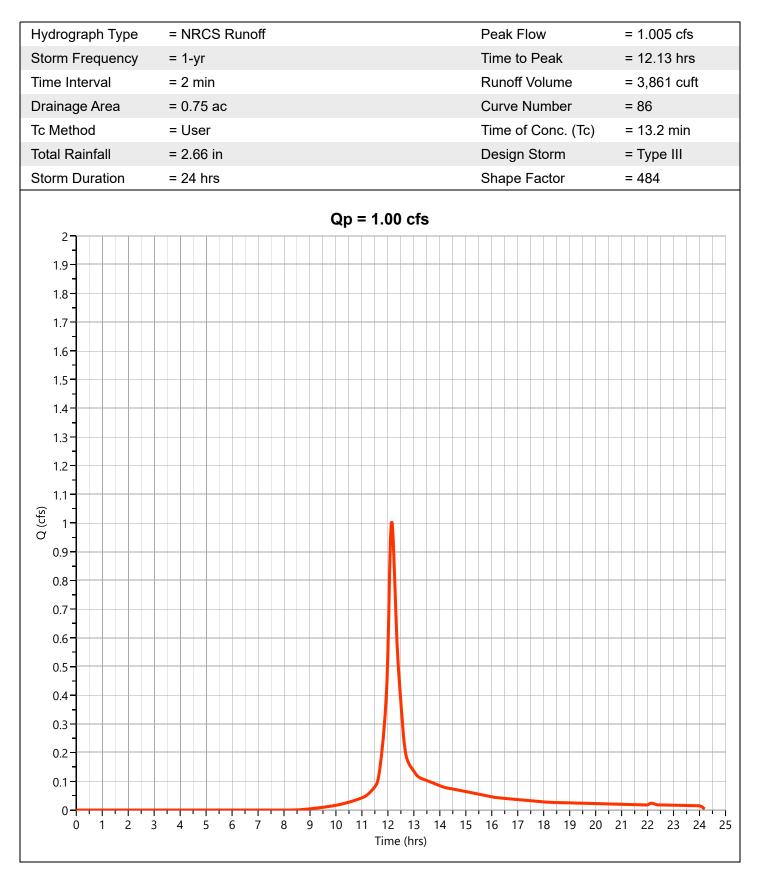
DESIGN STORM

HYDROGRAPHS

This page is left intentionally blank

Hydrograph 1-yr Summary

01-14-2022

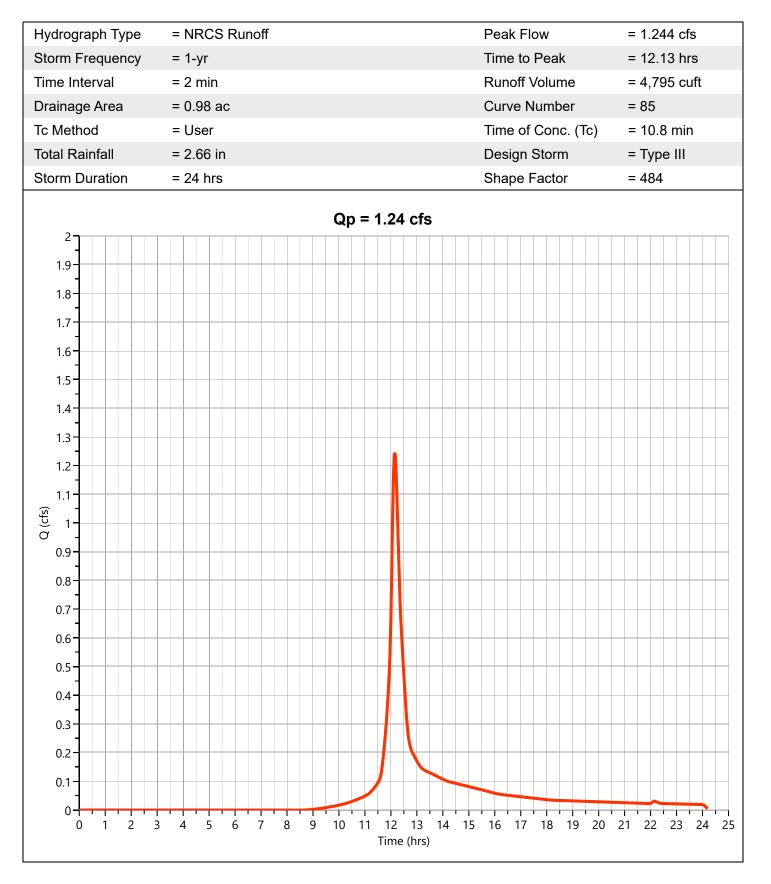

lyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	EX-A	1.034	12.17	4,085			
2	NRCS Runoff	EX-B	0.024	12.53	599			
3	NRCS Runoff	PR-A	1.005	12.13	3,861			
4	NRCS Runoff	PR-B1	1.244	12.13	4,795			
5	NRCS Runoff	PR-B2	0.760	12.07	2,281			
6	NRCS Runoff	PR-B3	0.007	13.67	191			
7	Pond Route	Pond B1-Pre treat	1.244	12.17	4,575	4	507.06	2,276
8	Pond Route	UG Chambers	0.000	12.53	0.000	7	507.19	133
9	Pond Route	Pond B2 Forebay	0.613	12.13	1,784	5	511.04	8,170
10	Pond Route	Pond B2	0.017	18.10	1,255	9	508.46	1,710
11	Junction	DP-B	0.022	15.17	1,447	6, 8, 10		

Hydrology Studio v 3.0.0.21

PR-A

Project Name: Donnelly - Sugarloaf

01-14-2022

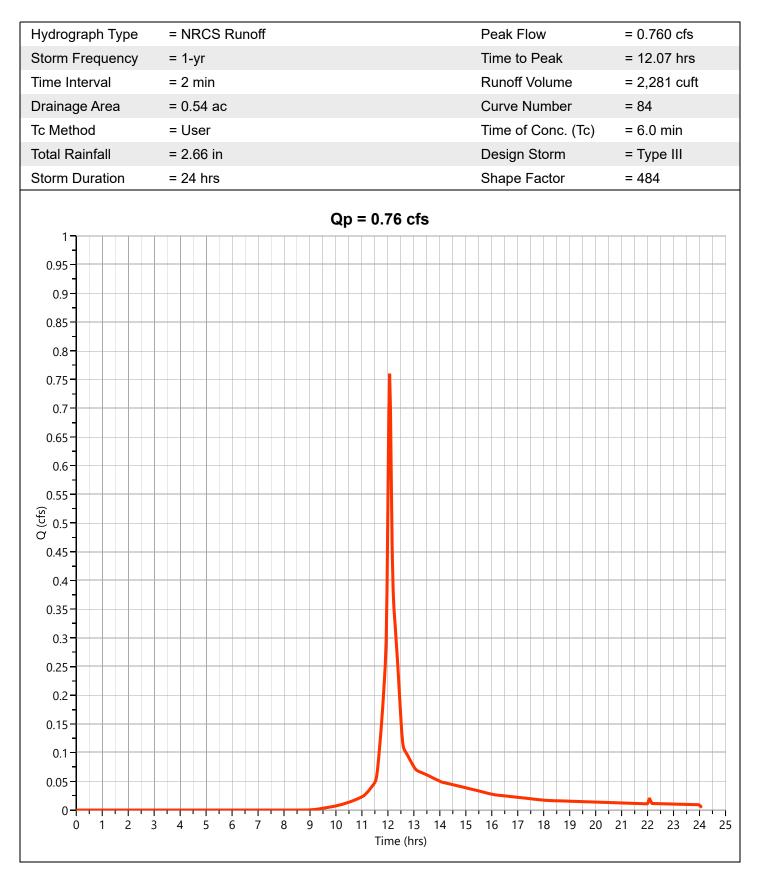


Hydrology Studio v 3.0.0.21

PR-B1

Project Name: Donnelly - Sugarloaf

01-14-2022

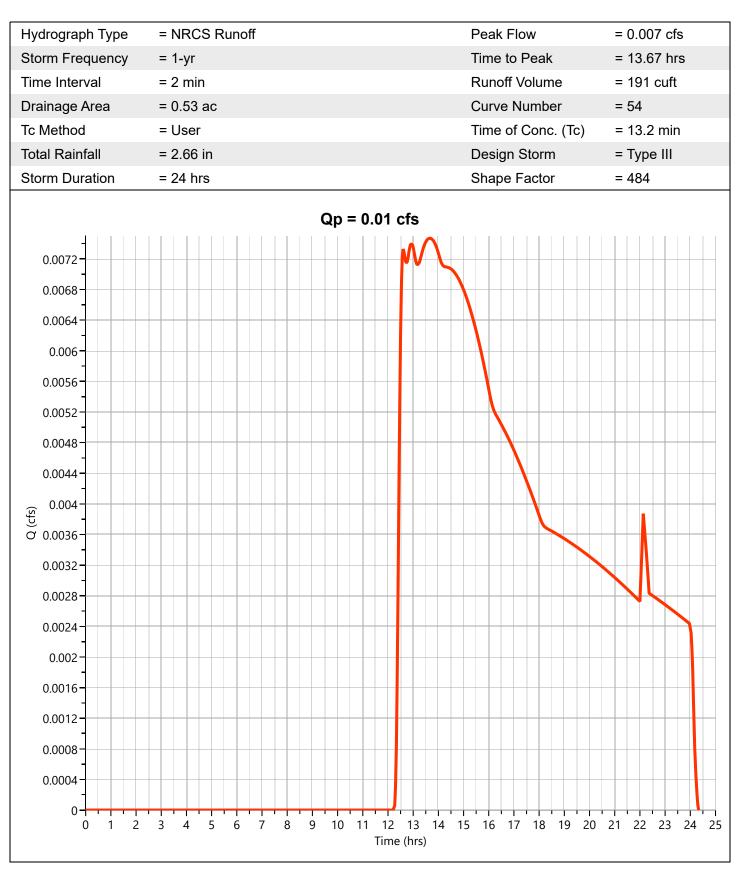


Hydrology Studio v 3.0.0.21

PR-B2

Project Name: Donnelly - Sugarloaf

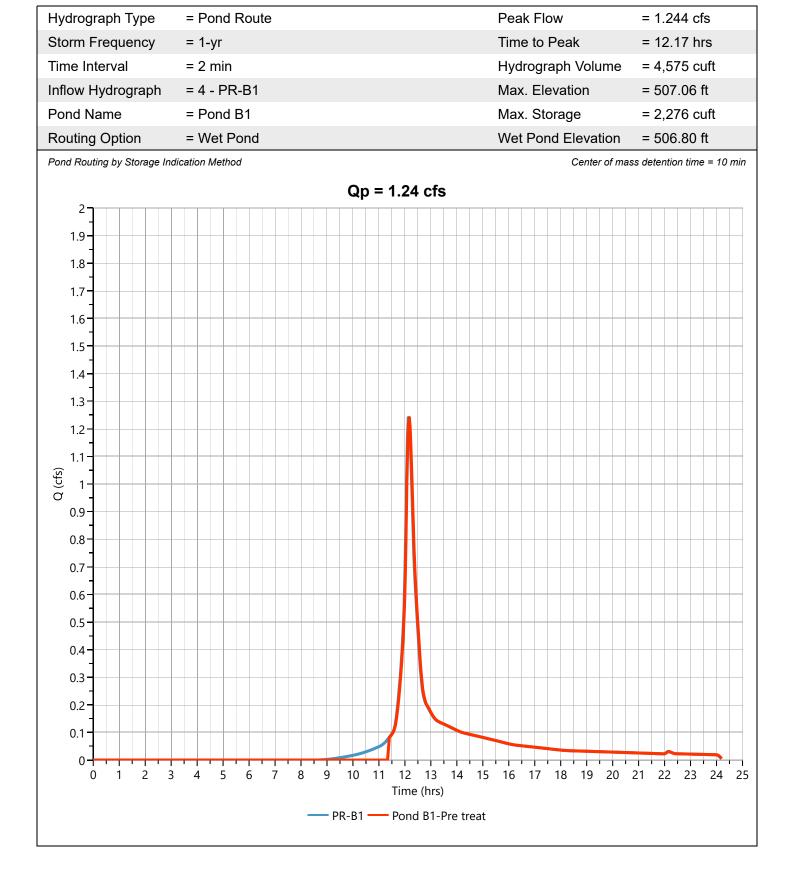
01-14-2022



Hydrology Studio v 3.0.0.21

PR-B3

Project Name: Donnelly - Sugarloaf


01-14-2022

Hydrology Studio v 3.0.0.21

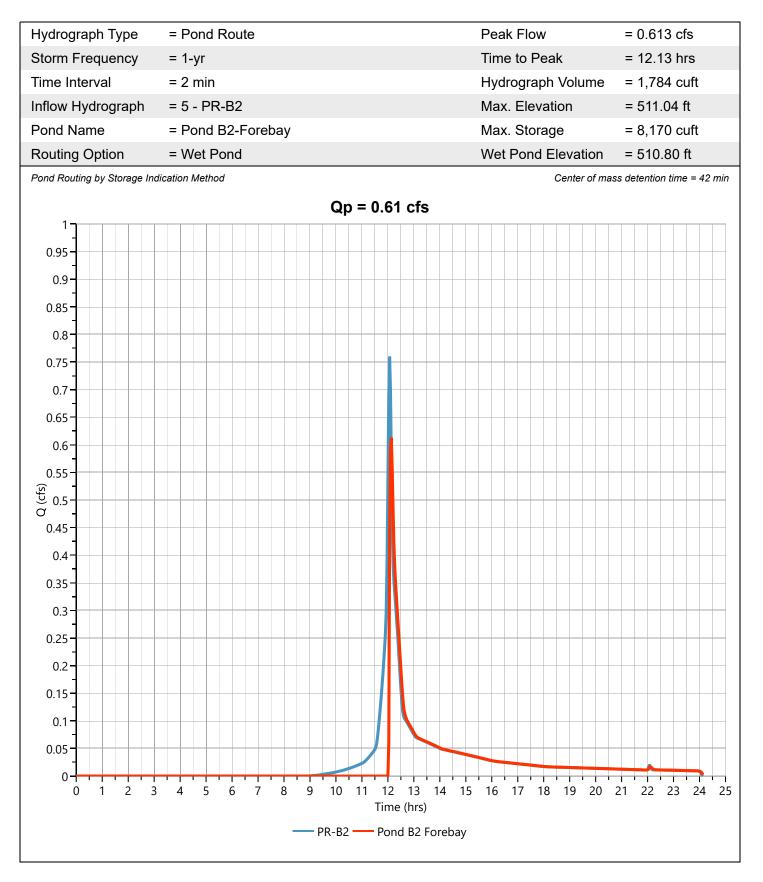
Pond B1-Pre treat

01-14-2022

Hydrology Studio v 3.0.0.21

UG Chambers

Project Name: Donnelly - Sugarloaf

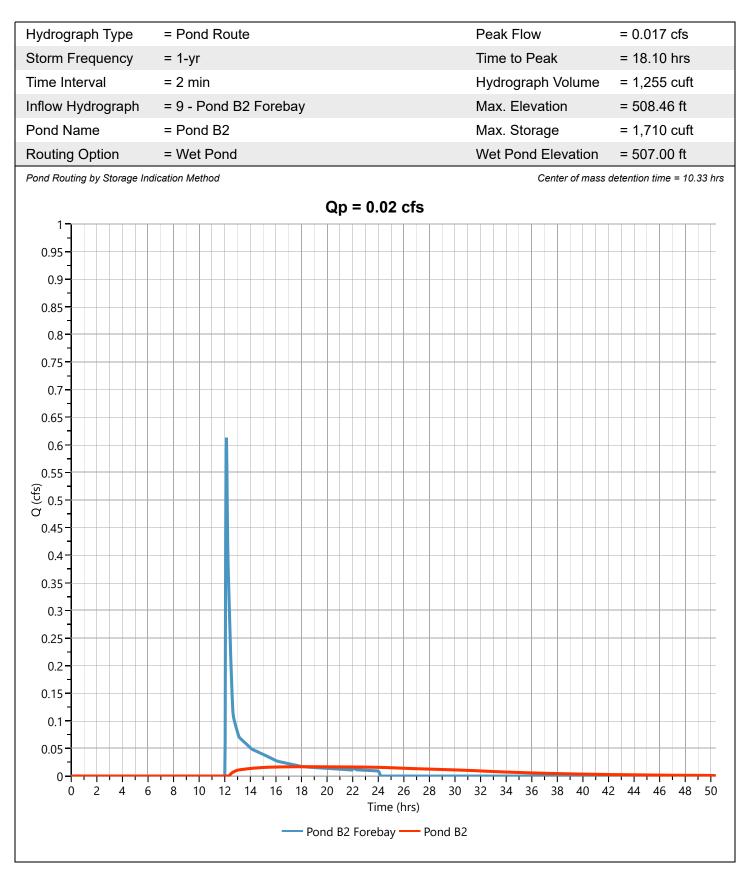

01-14-2022

Hydrograph Type	= Pond Rout	e					ak Flow			000 cfs		
Storm Frequency	= 1-yr						ne to Pe		= 12.53 hrs			
Time Interval	= 2 min							n Volume	e = 0.000 cuft			
nflow Hydrograph	= 7 - Pond B		at				x. Eleva			7.19 ft		
Pond Name	= SC-740 Ch	ambers				Ма	Max. Storage = 133 cuft					
Pond Routing by Storage In	dication Method											
			Qp	= 0.00) cfs							
2												
1.9												
1.8												
1.7												
- 1.6-												
- 1.5												
-												
1.4												
1.3												
1.2												
1.1												
0.9										$-\mathbf{H}$		
0.8												
0.7												
-												
0.6												
0.5												
0.4												
0.3												
0.2												
- 0.1 -												
-												
0 1	2 3	4	5	6 Tim	7 e (hrs)	8	9	10	11	12	1	
		Po	ond B1-Pr	e treat -	- UG Ch	ambers						

Hydrology Studio v 3.0.0.21

Pond B2 Forebay

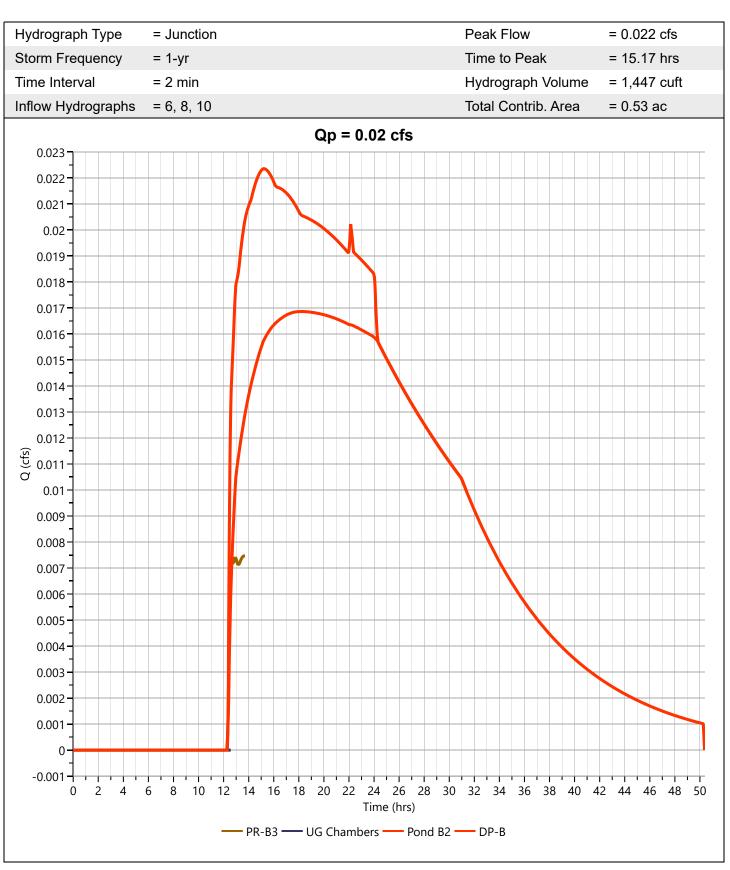
01-14-2022



Hydrology Studio v 3.0.0.21

Pond B2

Project Name: Donnelly - Sugarloaf


01-14-2022

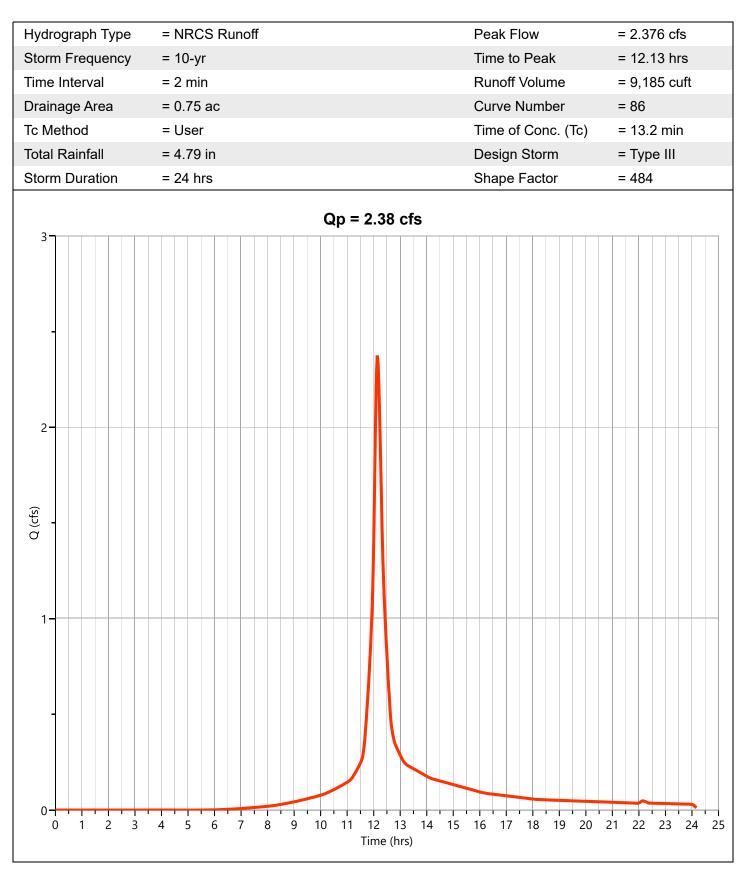
Hydrology Studio v 3.0.0.21

DP-B

01-14-2022

Hydrograph 10-yr Summary

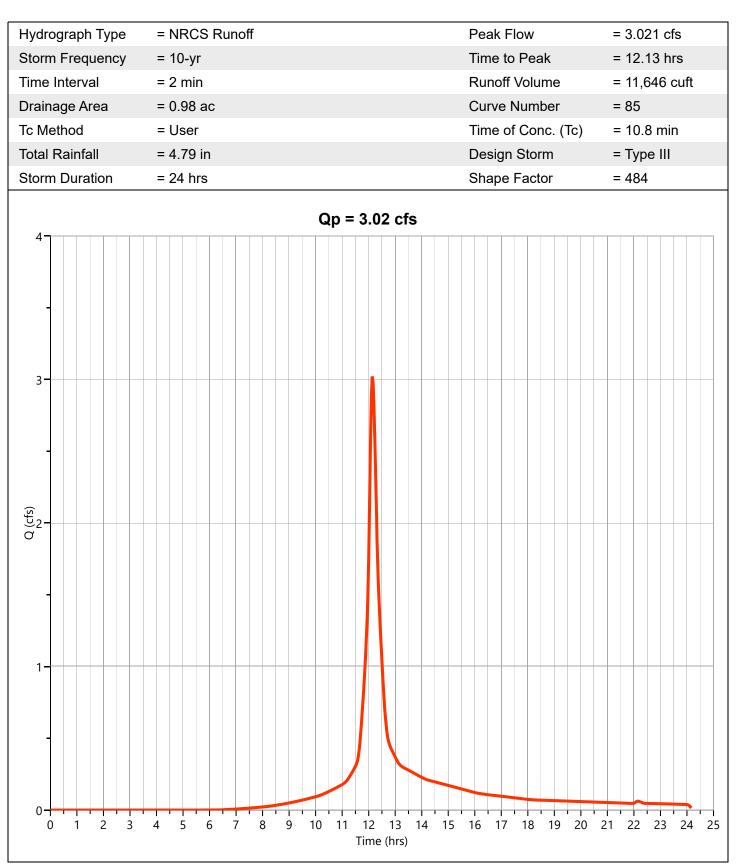
Project Name: Donnelly - Sugarloaf


01-14-2022

Hyd.	udio v 3.0.0.21 Hydrograph	Hydrograph	Peak Flow	Time to Peak	Hydrograph Volume	Inflow Hyd(s)	Maximum Elevation	Maximum Storage
No.	Туре	Name	(cfs)	(hrs)	(cuft)	yu(ə)	(ft)	(cuft)
1	NRCS Runoff	EX-A	2.886	12.13	11,060			
2	NRCS Runoff	EX-B	1.109	12.13	5,094			
3	NRCS Runoff	PR-A	2.376	12.13	9,185			
4	NRCS Runoff	PR-B1	3.021	12.13	11,646			
5	NRCS Runoff	PR-B2	1.879	12.07	5,658			
6	NRCS Runoff	PR-B3	0.318	12.20	1,628			
7	Pond Route	Pond B1-Pre treat	3.000	12.17	11,425	4	507.15	2,369
8	Pond Route	UG Chambers	0.665	12.37	592	7	508.79	1,828
9	Pond Route	Pond B2 Forebay	1.696	12.10	5,160	5	511.11	8,345
10	Pond Route	Pond B2	0.037	17.90	4,632	9	510.07	4,312
11	Junction	DP-B	0.939	12.37	6,852	6, 8, 10		

Hydrology Studio v 3.0.0.21

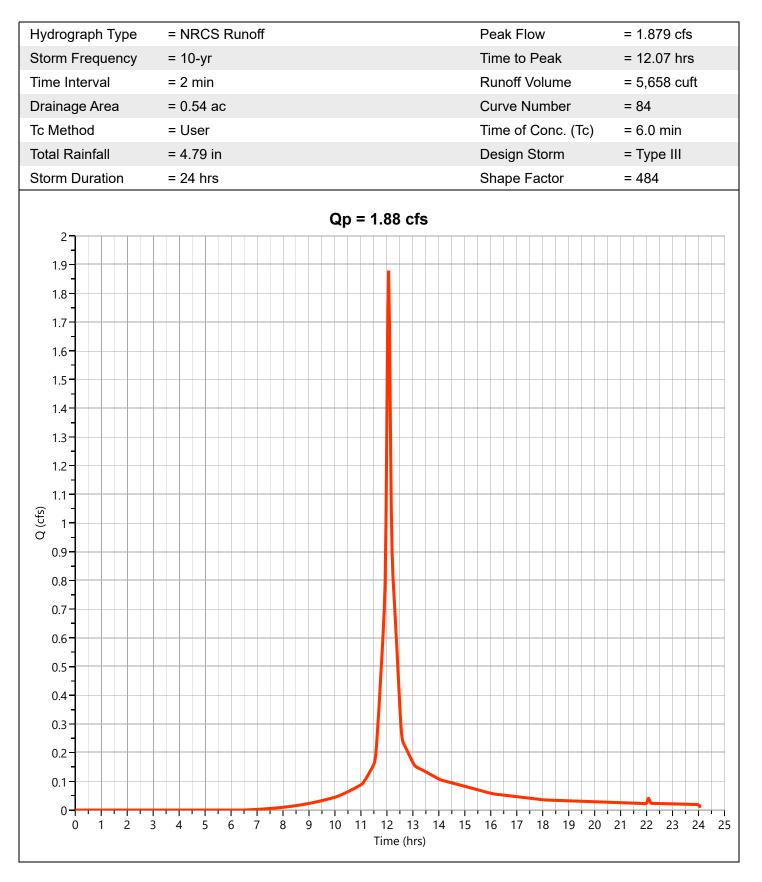
PR-A


01-14-2022

Hydrology Studio v 3.0.0.21

PR-B1

01-14-2022

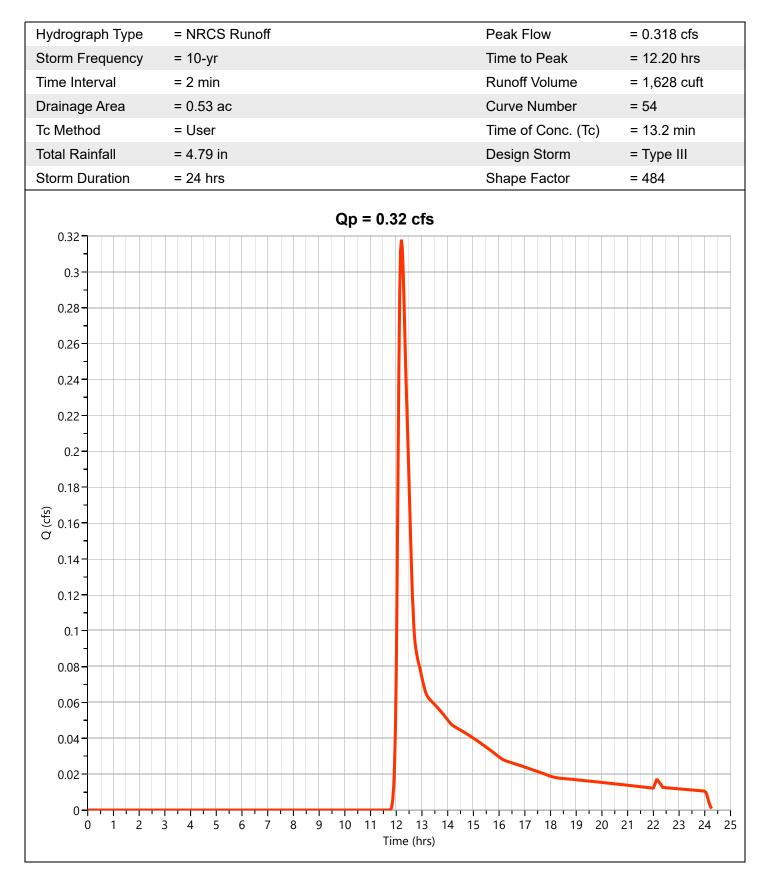


Hydrology Studio v 3.0.0.21

PR-B2

Project Name: Donnelly - Sugarloaf

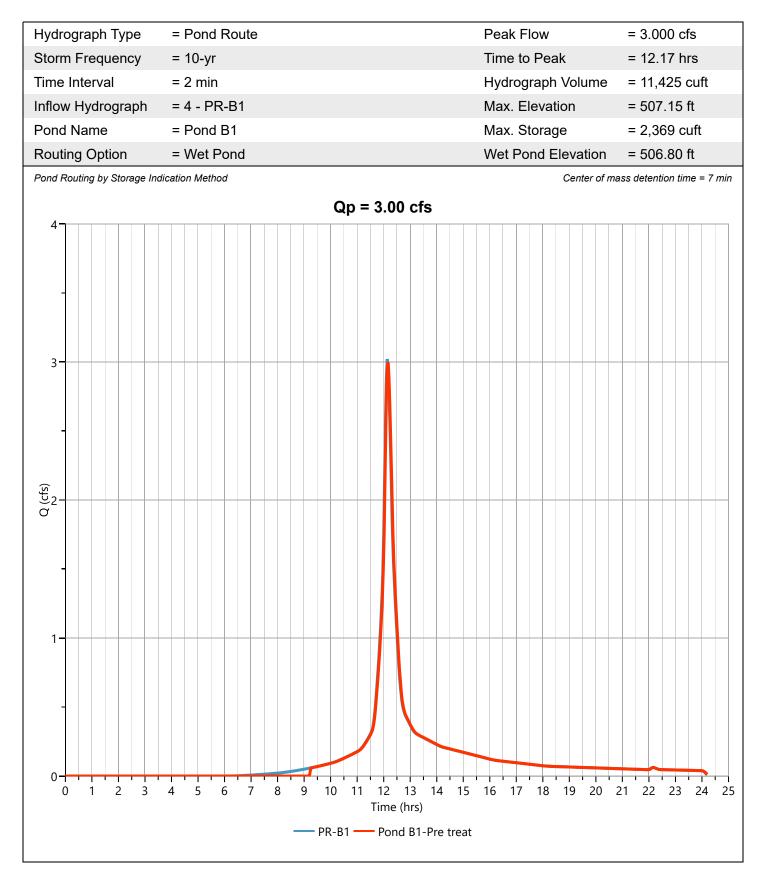
01-14-2022



Hydrology Studio v 3.0.0.21

PR-B3

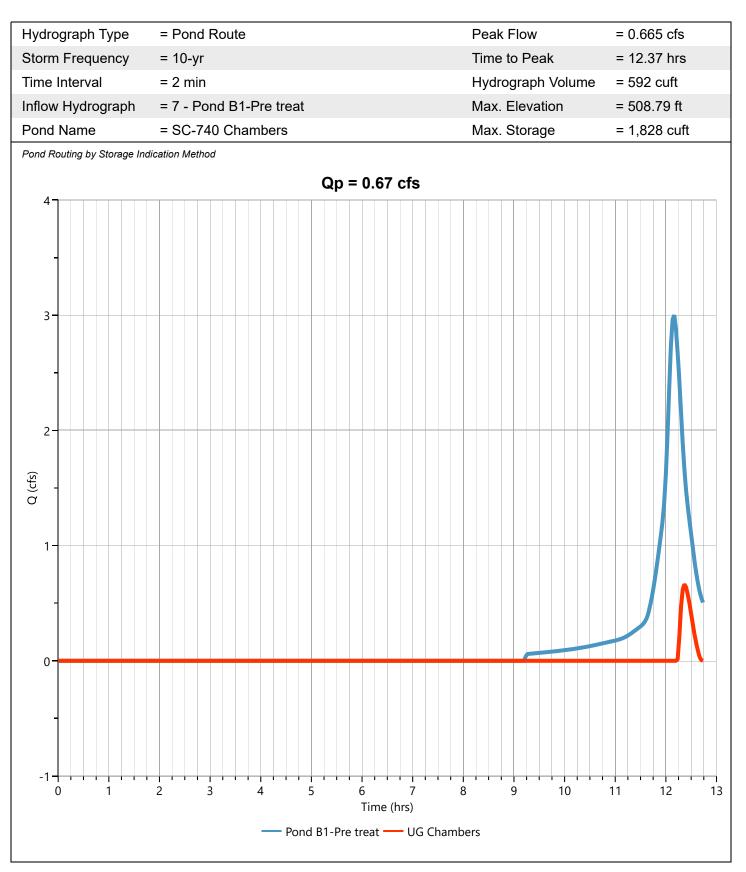
Project Name: Donnelly - Sugarloaf


01-14-2022

Hydrology Studio v 3.0.0.21

Pond B1-Pre treat

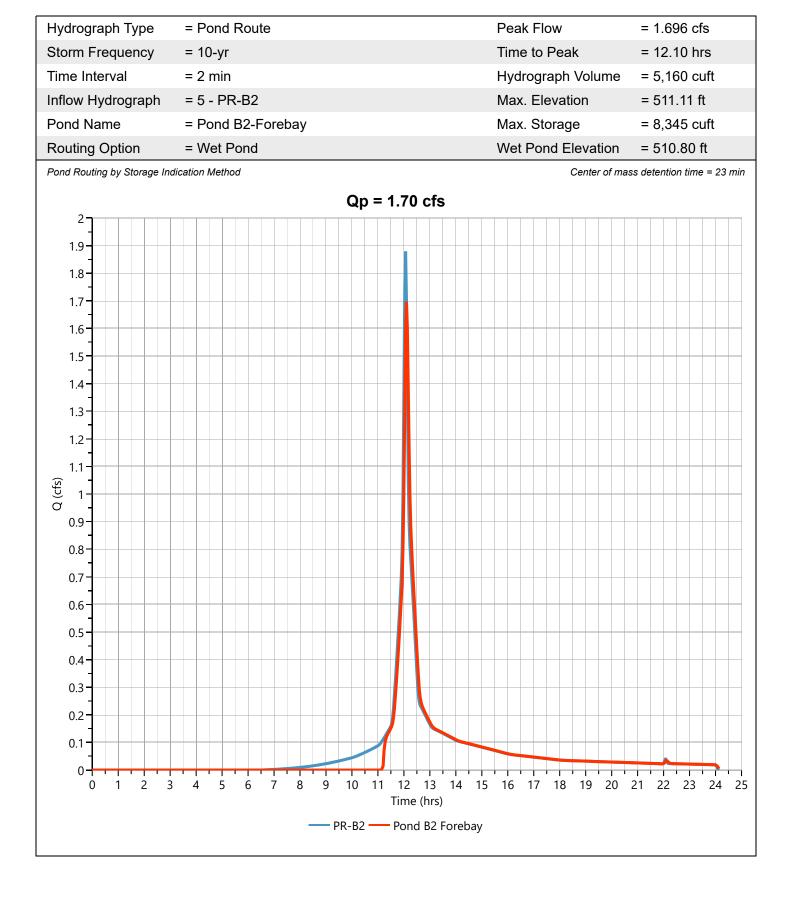
01-14-2022



Hydrology Studio v 3.0.0.21

UG Chambers

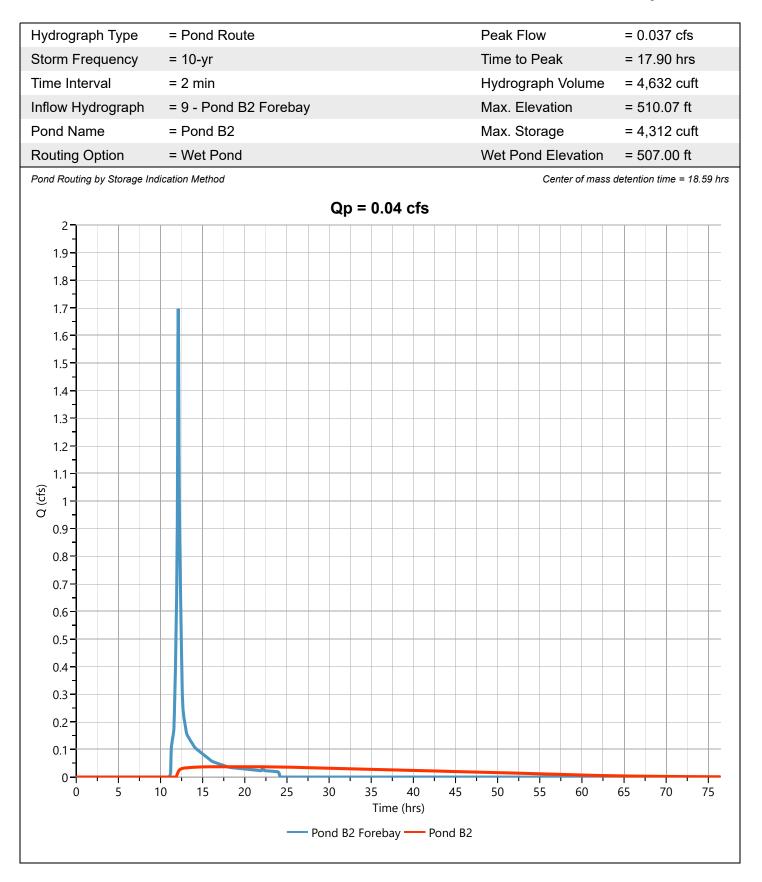
Project Name: Donnelly - Sugarloaf


01-14-2022

Hydrology Studio v 3.0.0.21

Pond B2 Forebay

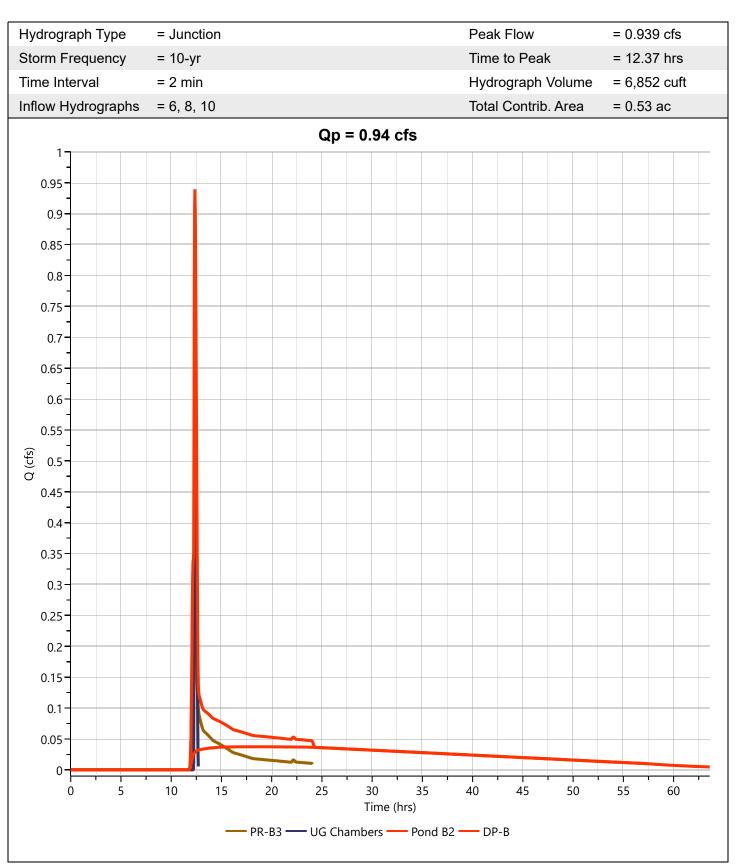
01-14-2022



Hydrology Studio v 3.0.0.21

Pond B2

Project Name: Donnelly - Sugarloaf


01-14-2022

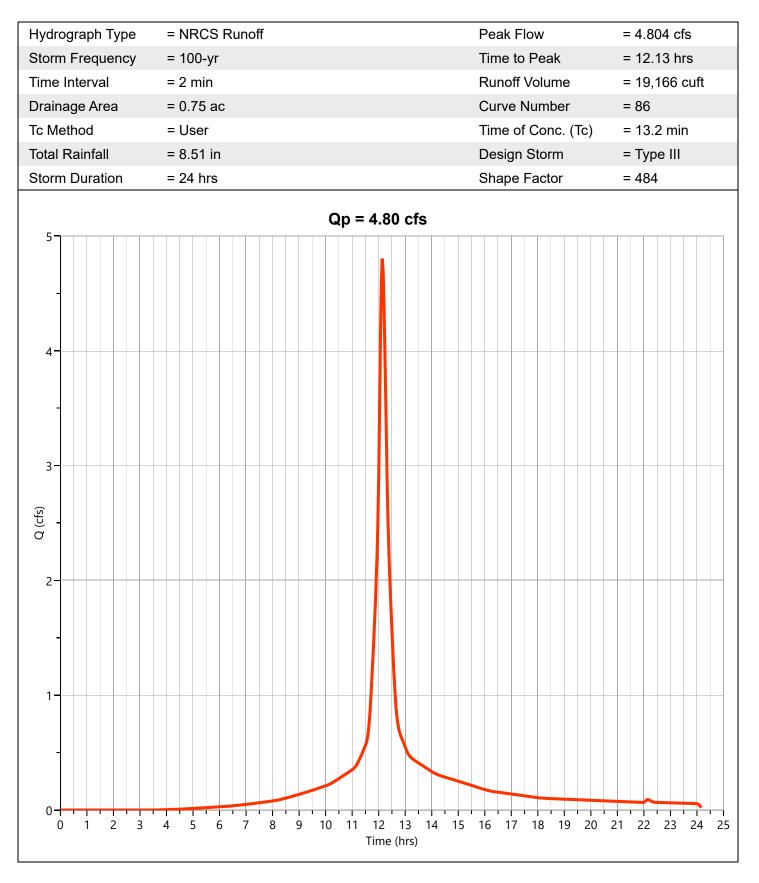
Hydrology Studio v 3.0.0.21

DP-B

01-14-2022

Hydrograph 100-yr Summary

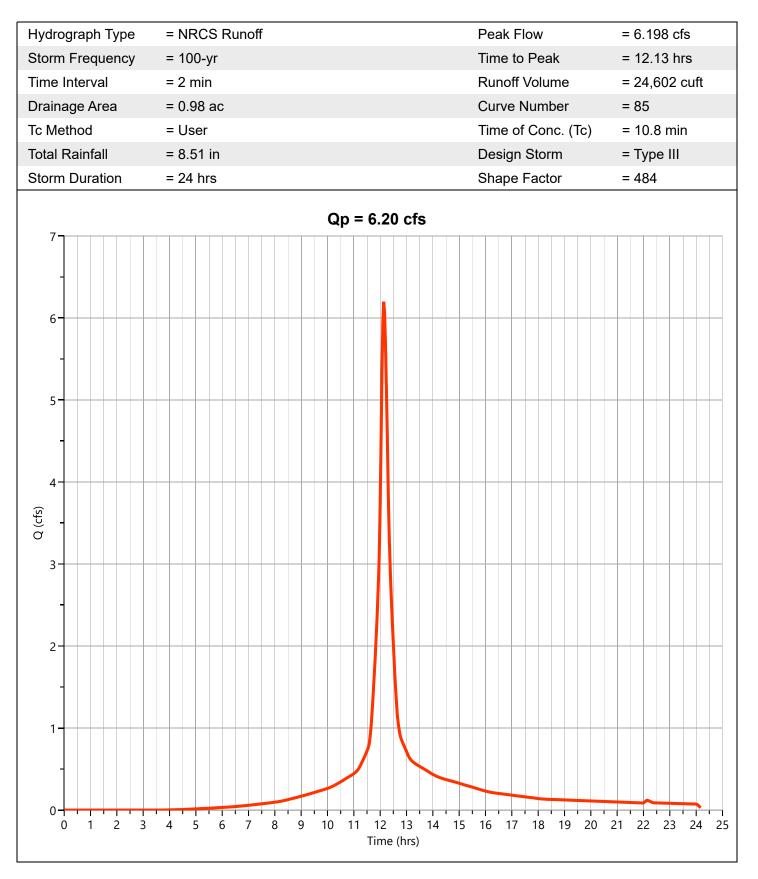
Project Name: Donnelly - Sugarloaf


Hyd. Hy No. Tyj	drograph De	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1 NR	CS Runoff	EX-A	6.401	12.13	24,909			
2 NR	CS Runoff	EX-B	5.261	12.10	18,764			
3 NR	CS Runoff	PR-A	4.804	12.13	19,166			
4 NR	CS Runoff	PR-B1	6.198	12.13	24,602			
5 NR	CS Runoff	PR-B2	3.890	12.07	12,103			
6 NR	CS Runoff	PR-B3	1.505	12.17	5,998			
7 Po	nd Route	Pond B1-Pre treat	6.142	12.13	24,382	4	507.27	2,507
8 Po	nd Route	UG Chambers	3.334	12.30	6,004	7	510.14	3,510
9 Po	nd Route	Pond B2 Forebay	3.648	12.10	11,605	5	511.22	8,615
10 Po	nd Route	Pond B2	0.373	12.90	11,057	9	511.22	7,746
	nction			12.23	23,059	6, 8, 10		

Hydrology Studio v 3.0.0.21

PR-A

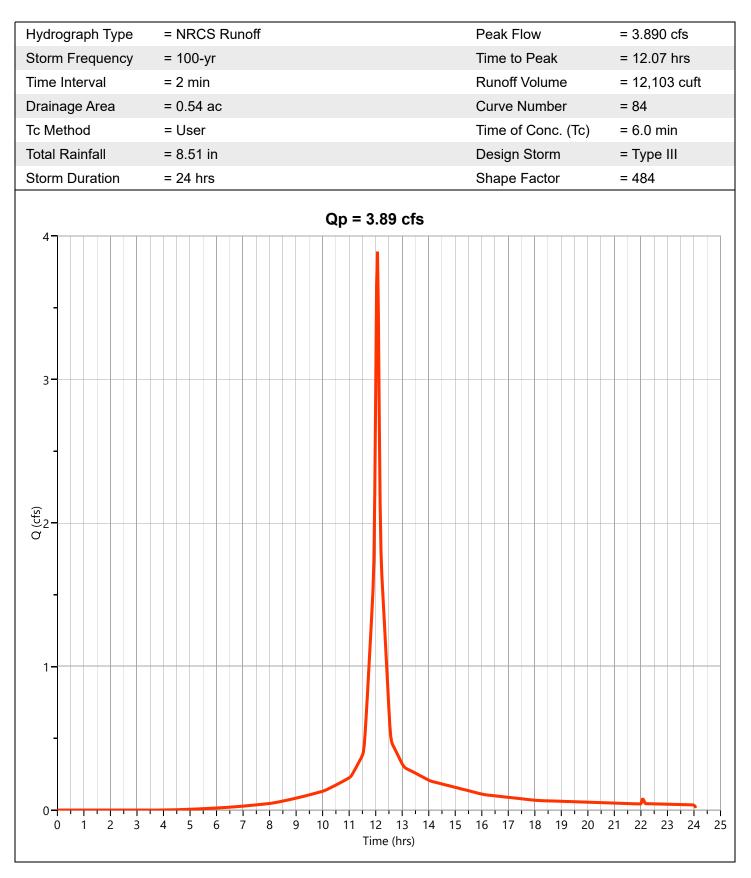
Project Name: Donnelly - Sugarloaf


01-14-2022

Hydrology Studio v 3.0.0.21

PR-B1

01-14-2022

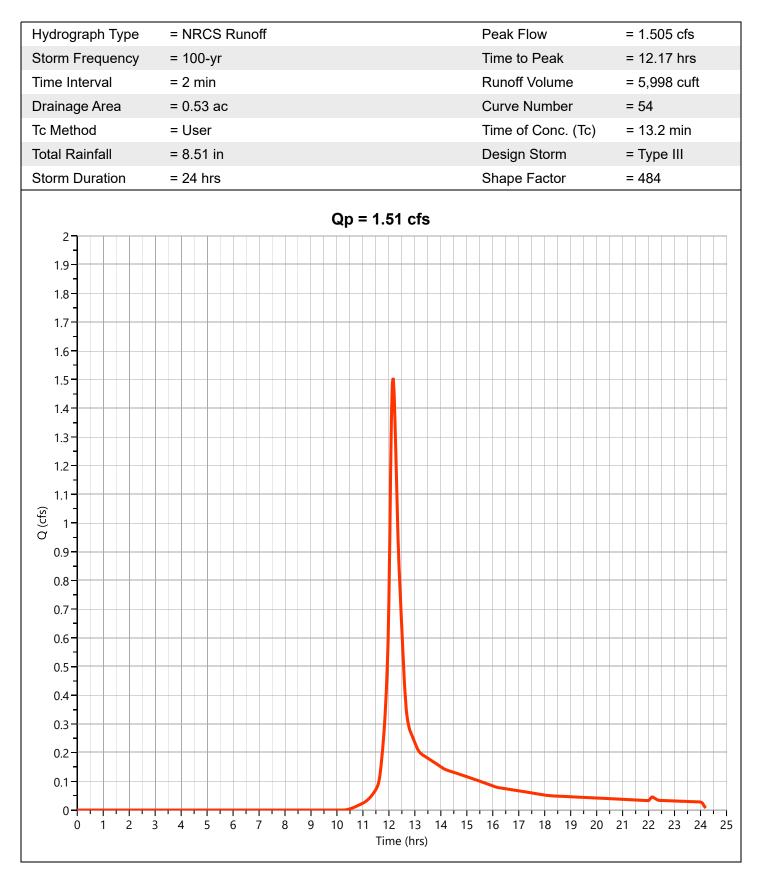


Hydrology Studio v 3.0.0.21

PR-B2

Project Name: Donnelly - Sugarloaf

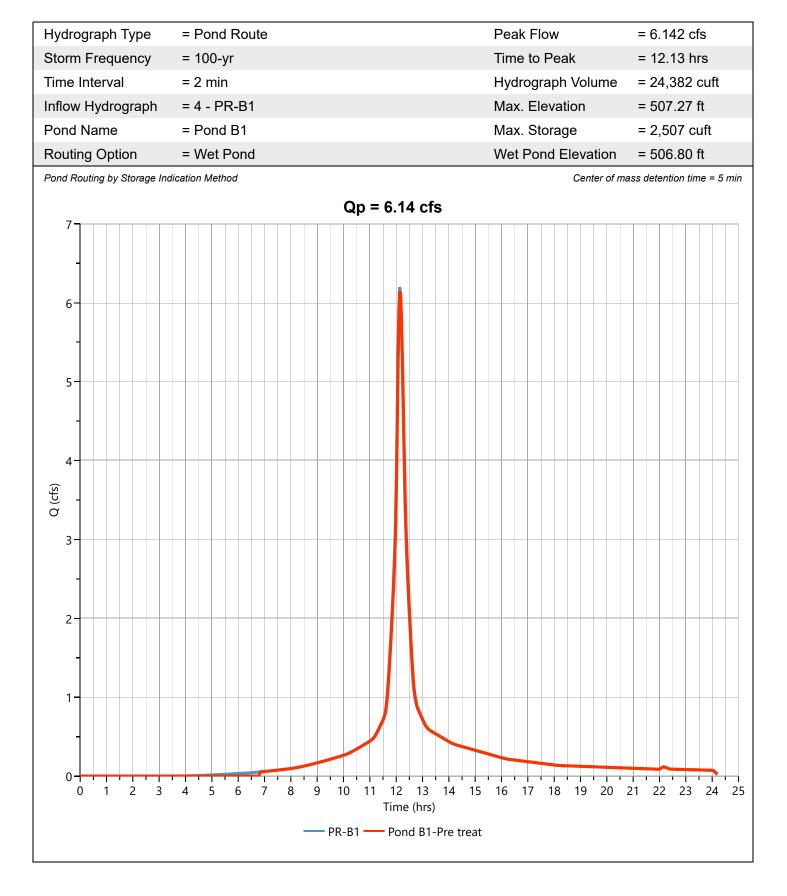
01-14-2022



Hydrology Studio v 3.0.0.21

PR-B3

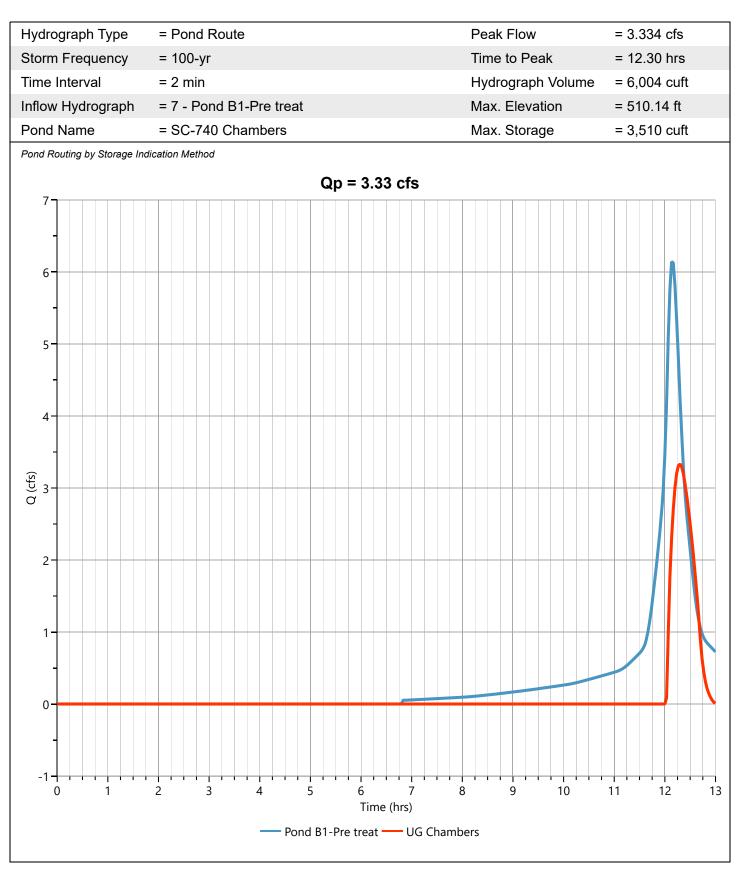
Project Name: Donnelly - Sugarloaf


01-14-2022

Hydrology Studio v 3.0.0.21

Pond B1-Pre treat

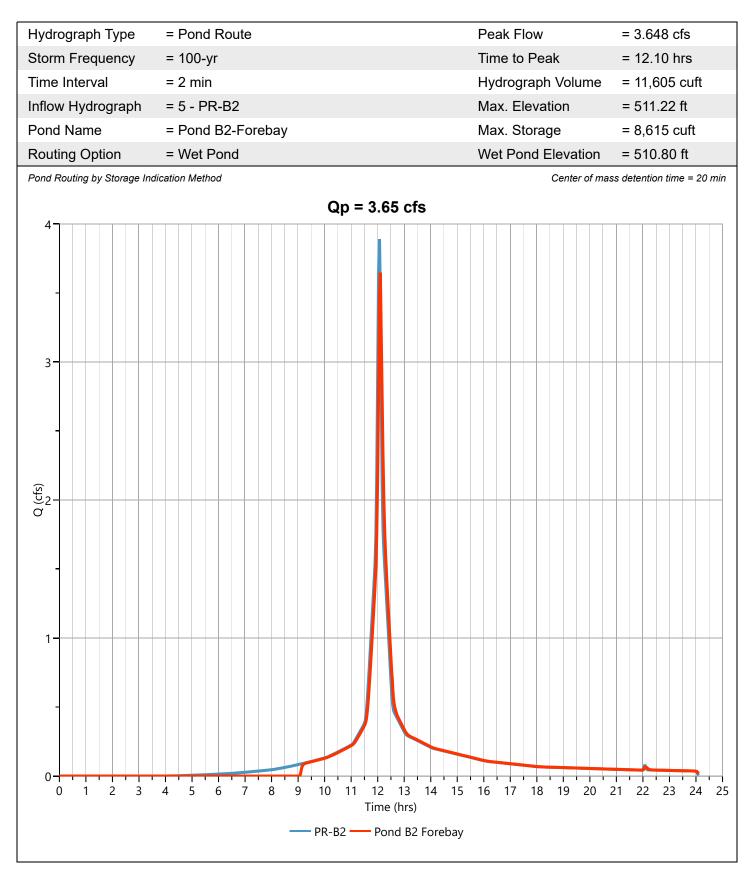
01-14-2022



Hydrology Studio v 3.0.0.21

UG Chambers

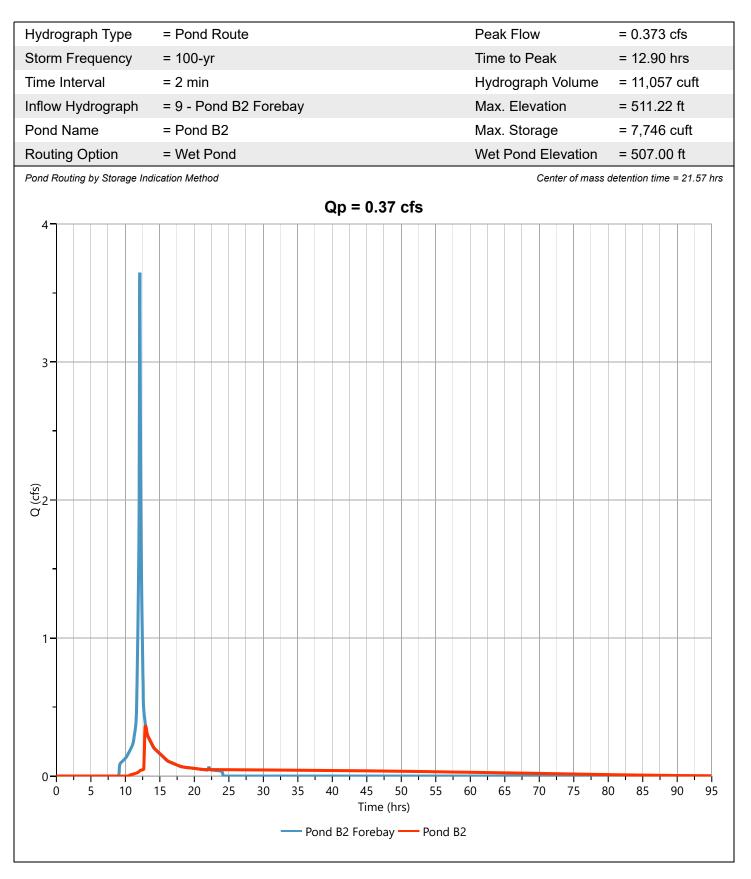
Project Name: Donnelly - Sugarloaf


01-14-2022

Hydrology Studio v 3.0.0.21

Pond B2 Forebay

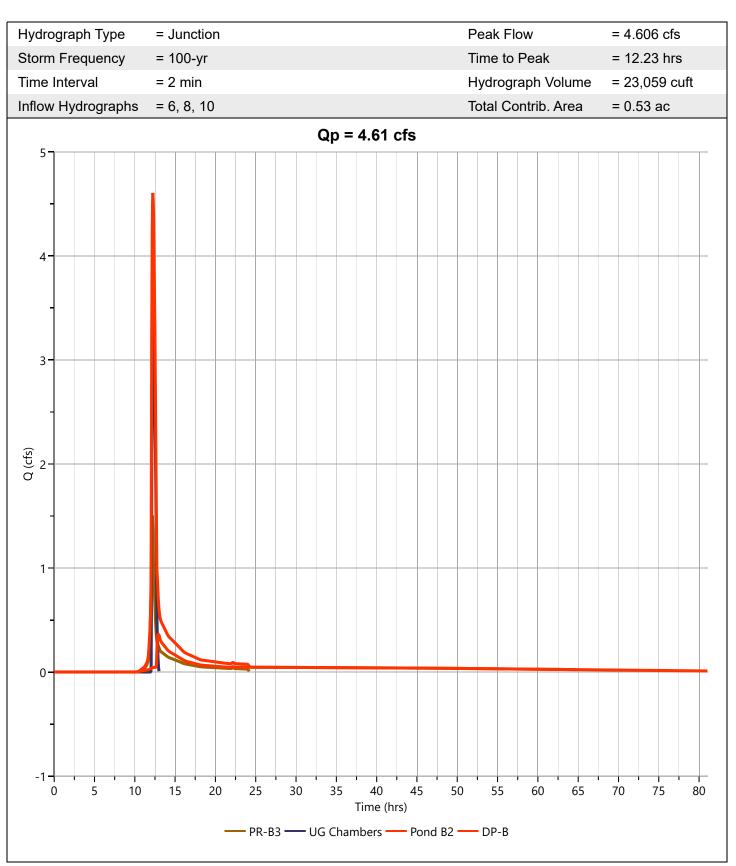
01-14-2022



Hydrology Studio v 3.0.0.21

Pond B2

Project Name: Donnelly - Sugarloaf


01-14-2022

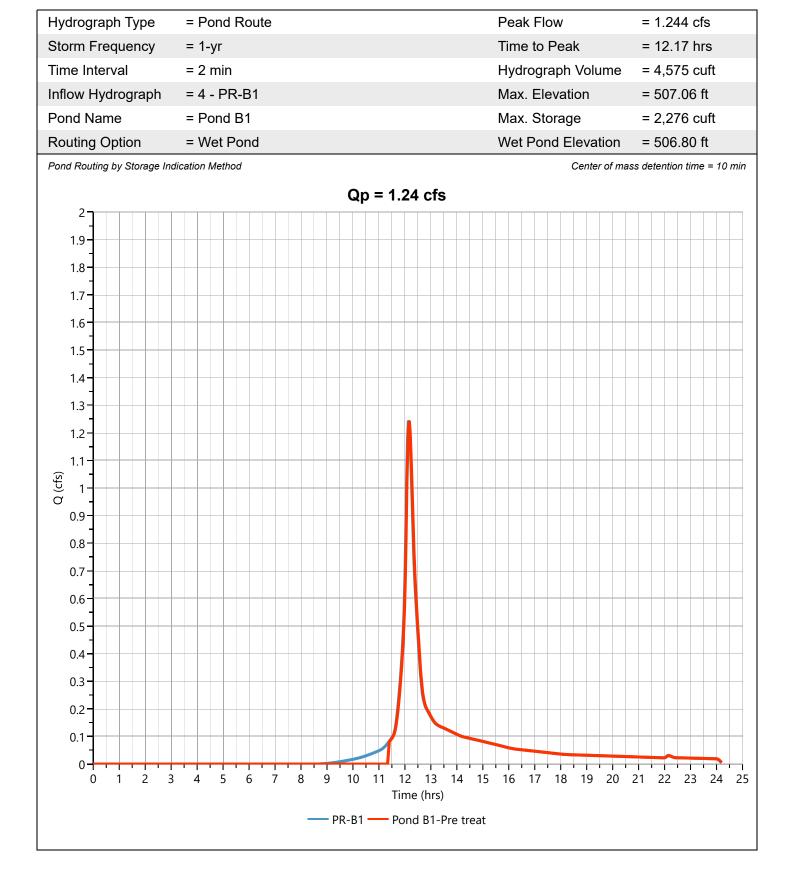
Hydrology Studio v 3.0.0.21

DP-B

01-14-2022

This page is left intentionally blank

APPENDIX 9

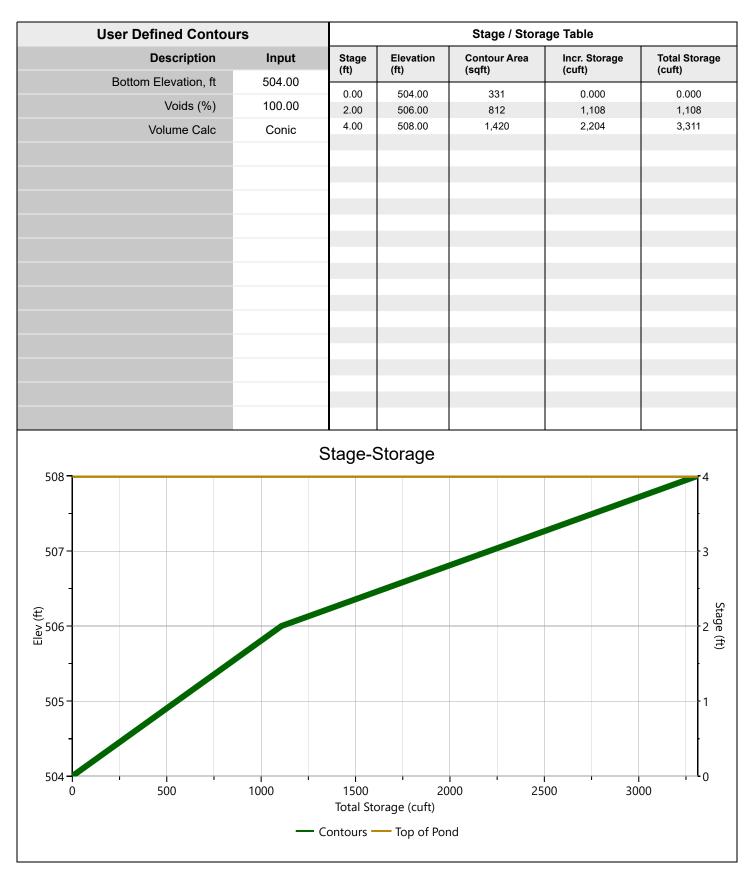

RESERVOIR REPORTS

This page is left intentionally blank

Hydrology Studio v 3.0.0.21

Pond B1-Pre treat

01-11-2022



Hydrology Studio v 3.0.0.21

Pond B1

01-11-2022

Stage-Storage



Hydrology Studio v 3.0.0.21

Pond B1

01-11-2022

Stage-Discharge

Hydrology Studio v 3.0.0.21

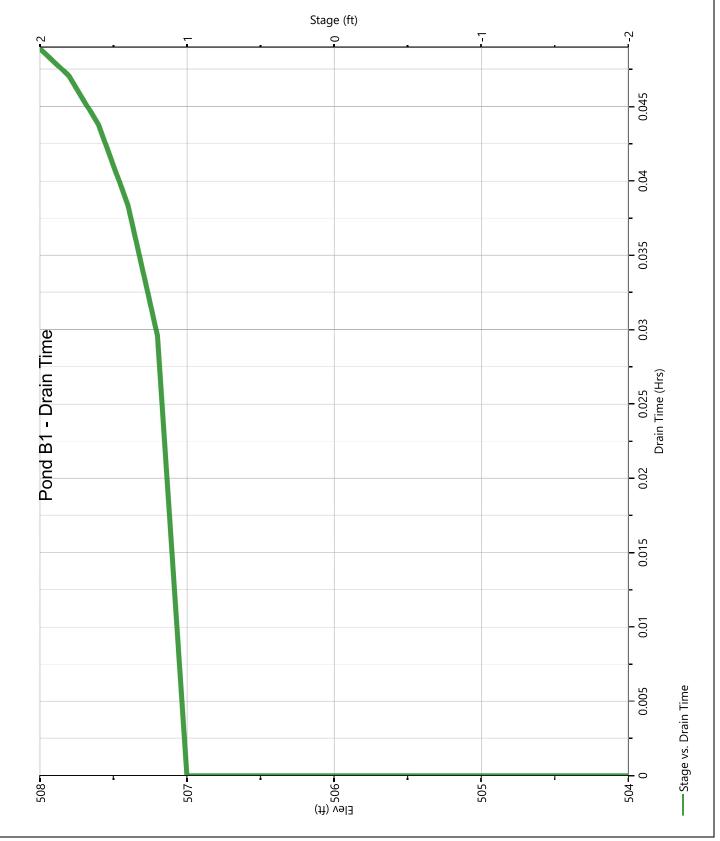
Pond B1

Project Name: Donnelly - Sugarloaf

01-11-2022

Stage-Storage-Discharge Summary

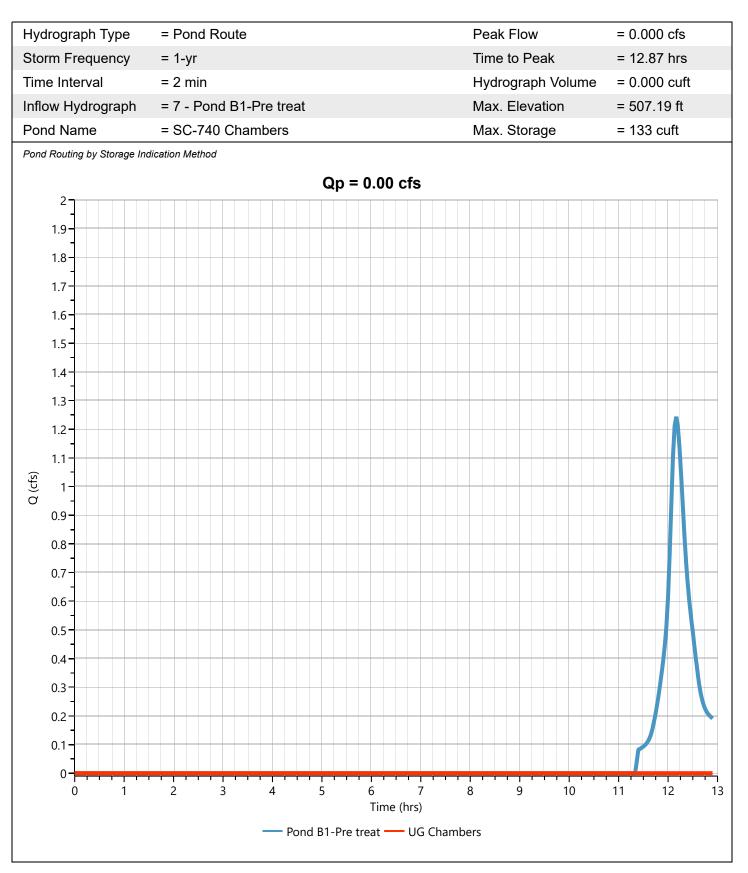
(ff) (cuft) (cfs) 1 2 3 (cfs) 1 2 3 (cfs) (cfs)	Stage Elev. Storag		Culvert	Orifices, cfs			Riser	Weirs, cfs			Pf Riser	Exfil	User	Total
2.00 506.00 1,108 0.000 0.000 0.000 0.000 0.000	(ft) (ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
	0.00 504.00	0.000	0.000				0.000	0.000						0.000
4.00 508.00 3,311 10.85 ic 0.000 30.57 41.														0.000
	2.00 506.00	1,108	0.000				0.000	0.000						


Hydrology Studio v 3.0.0.21

Pond B1

01-11-2022

Pond Drawdown



Hydrology Studio v 3.0.0.21

UG Chambers

Project Name: Donnelly - Sugarloaf

01-11-2022

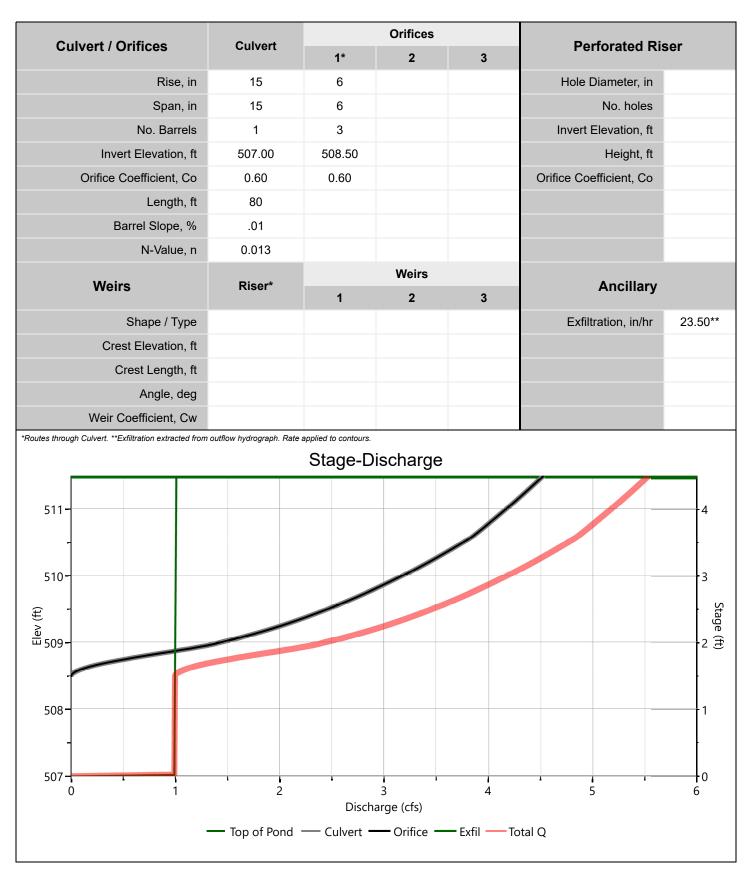
Hydrology Studio v 3.0.0.21

SC-740 Chambers

01-11-2022

Stage-Storage

StormTech® SC-740™ Ch	amber	Stage / Storage Table								
Description	Input	Stage (in)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)				
Chamber Height, in	30									
Chamber Shape	Arch	0.0 2.7	507.00 507.23	1,819 1,819	0.000 164	0.000				
	51	5.4	507.45	1,819	164	327				
Chamber Width, in		8.1	507.68	1,819	164	491				
Installed Length, ft	7.12	10.8	507.90	1,819	164	655				
No. Chambers	48	13.5	508.13	1,819	246	901				
Para Chambar Star, auft	2 202	16.2	508.35	1,819	314	1,216				
Bare Chamber Stor, cuft	2,203	18.9	508.58	1,819	312	1,528				
No. Rows	8	21.6	508.80	1,819	309	1,837				
Space Between Rows, in	6	24.3	509.03 509.25	1,819	305	2,142				
		27.0 29.7	509.25	1,819 1,819	298 291	2,440				
Stone Above, in	12	32.4	509.48	1,819	281	2,731 3,011				
Stone Below, in	12	35.1	509.93	1,819	268	3,279				
Stone Sides, in	12	37.8	510.15	1,819	251	3,530				
		40.5	510.38	1,819	227	3,758				
Stone Ends, in	12	43.2	510.60	1,819	184	3,941				
Encasement Voids, %	40.00	45.9	510.83	1,819	164	4,105				
ncasement Bottom Elevation, ft	507.00	48.6	511.05	1,819	164	4,269				
	507.00	51.3 54.0	511.28 511.50	1,819 1,819	164 164	4,433 4,596				
12 		Stage-S	Storage			 5				
511-						4				
510-						3				
509 -						2				
508 -						1				
507	1500	2000	2500	3000 3	500 4000	4500				


- UG Chambers - Top of Pond - Top of Chamber - Invert of Chamber - Top Stone - Bottom Stone

Hydrology Studio v 3.0.0.21

SC-740 Chambers

01-11-2022

Stage-Discharge

Hydrology Studio v 3.0.0.21

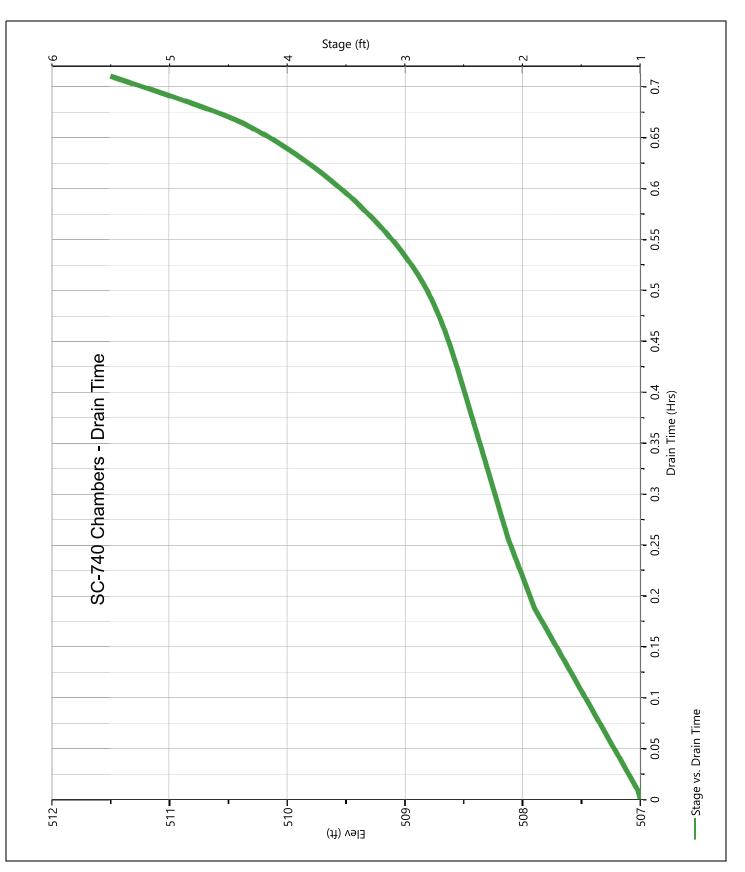
Project Name: Donnelly - Sugarloaf

01-11-2022

SC-740 Chambers

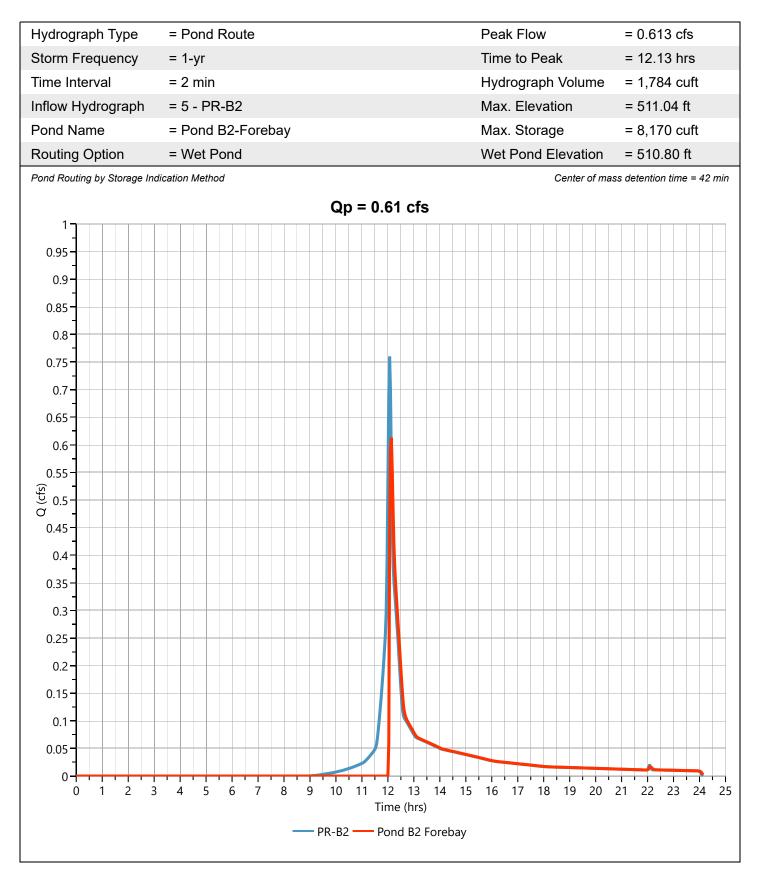
Stage-Storage-Discharge Summary

Stage	Elev.	Storage	cuft) (cfs)			S	Riser Weirs, cfs					Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	507.00	0.000	0.000	0.000								0.000		0.000
0.23	507.23	164	0.000	0.000								0.991		0.991
0.45	507.45	327	0.000	0.000								0.992		0.992
0.68	507.68	491	0.000	0.000								0.993		0.993
0.90	507.90	655	0.000	0.000								0.994		0.994
1.13	508.13	901	0.000	0.000								0.995		0.995
1.35	508.35	1,216	0.000	0.000								0.996		0.996
1.58	508.58	1,528	0.053 oc	0.053								0.997		1.049
1.80	508.80	1,837	0.690 oc	0.690								0.998		1.688
2.03	509.03	2,142	1.487 oc	1.487								0.999		2.486
2.25	509.25	2,440	2.005 oc	2.005								1.000		3.005
2.48	509.48	2,731	2.415 oc	2.415								1.001		3.415
2.70	509.70	3,011	2.764 oc	2.764								1.002		3.766
2.93	509.93	3,279	3.074 oc	3.074								1.003		4.077
3.15	510.15	3,530	3.355 oc	3.355								1.004		4.359
3.38	510.38	3,758	3.615 oc	3.615								1.005		4.620
3.60	510.60	3,941	3.853 oc	3.853								1.006		4.859
3.82	510.83	4,105	4.033 oc	4.033								1.007		5.039
4.05	511.05	4,269	4.205 oc	4.205								1.008		5.212
4.27	511.28	4,433	4.370 oc	4.370								1.009		5.379
4.50	511.50	4,596	4.529 oc	4.529								1.010		5.539


Hydrology Studio v 3.0.0.21

SC-740 Chambers

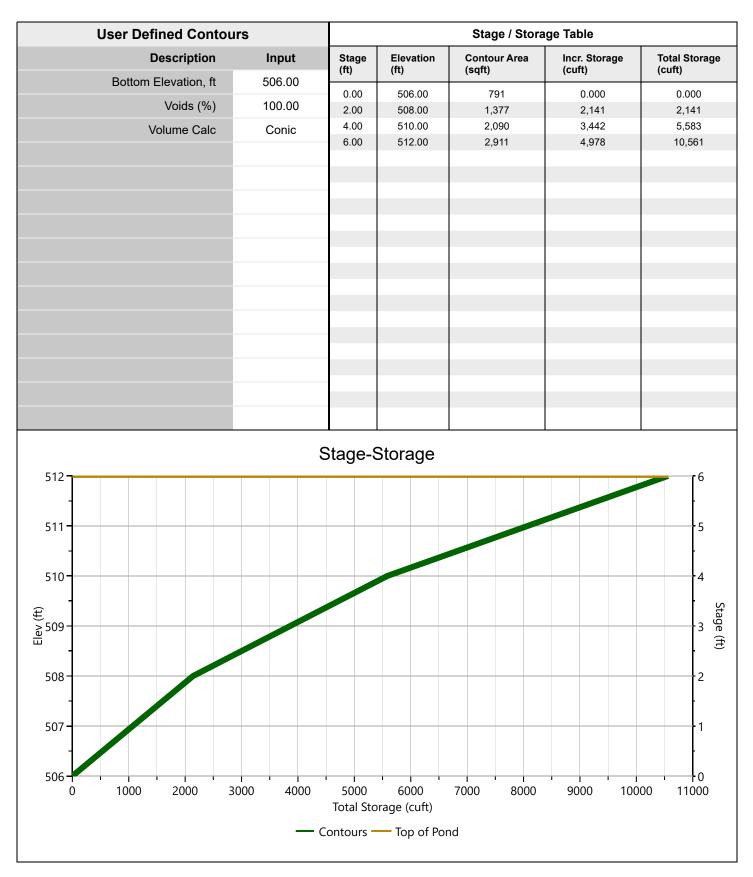
Pond Drawdown


Project Name: Donnelly - Sugarloaf

Hydrology Studio v 3.0.0.21

Pond B2 Forebay

01-11-2022

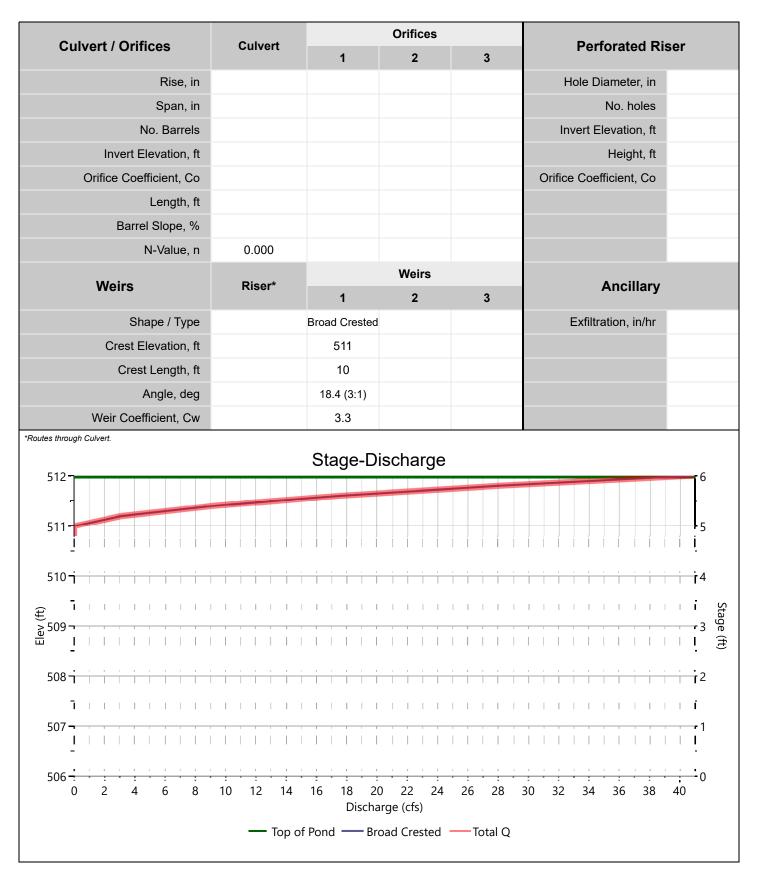


Hydrology Studio v 3.0.0.21

Pond B2-Forebay

01-11-2022

Stage-Storage



Hydrology Studio v 3.0.0.21

Pond B2-Forebay

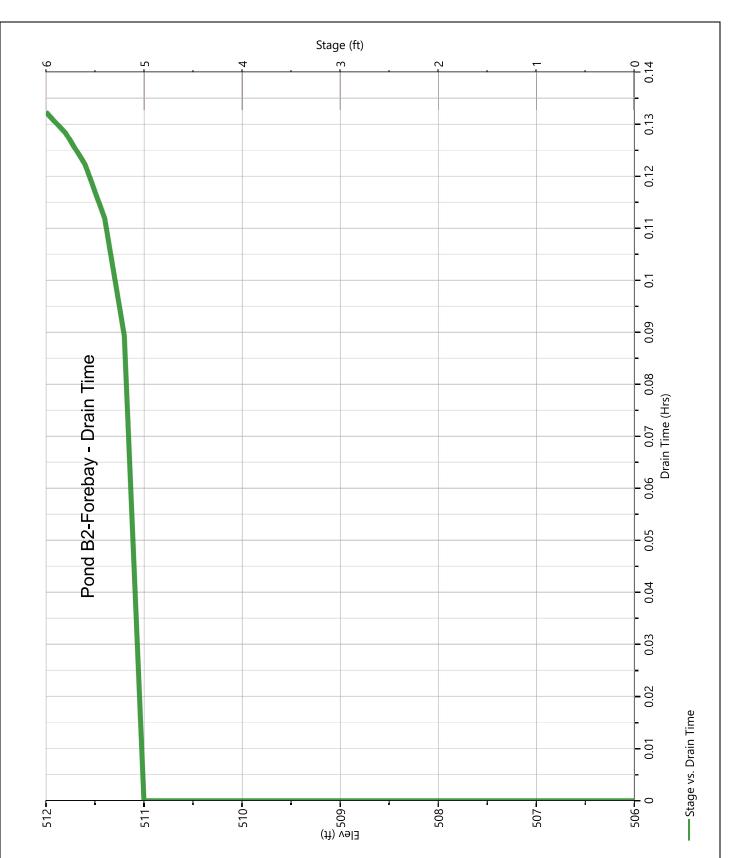
01-11-2022

Stage-Discharge

Hydrology Studio v 3.0.0.21

Project Name: Donnelly - Sugarloaf

01-11-2022


Pond B2-Forebay

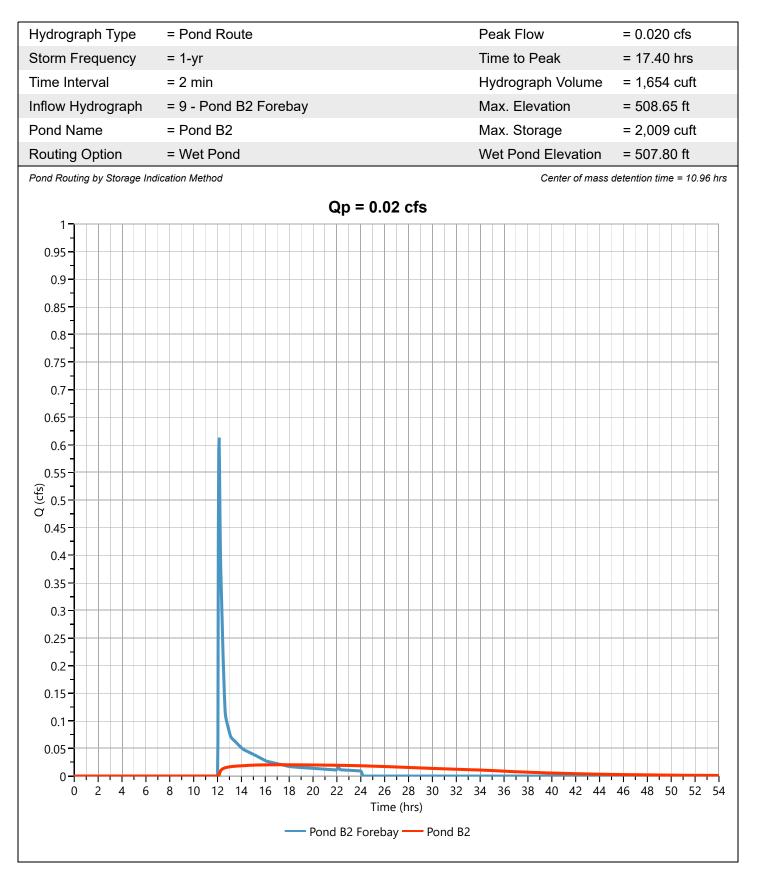
Stage-Storage-Discharge Summary

Stage	Elev.	Storage	Culvert	c	Drifices, cf	s	Riser		Weirs, cfs		Pf Riser	Exfil User		Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	506.00	0.000						0.000						0.000
2.00	508.00	2,141						0.000						0.000
4.00	510.00	5,583						0.000						0.000
6.00	512.00	10,561						40.92						40.92

Hydrology Studio v 3.0.0.21

Pond B2-Forebay

Pond Drawdown

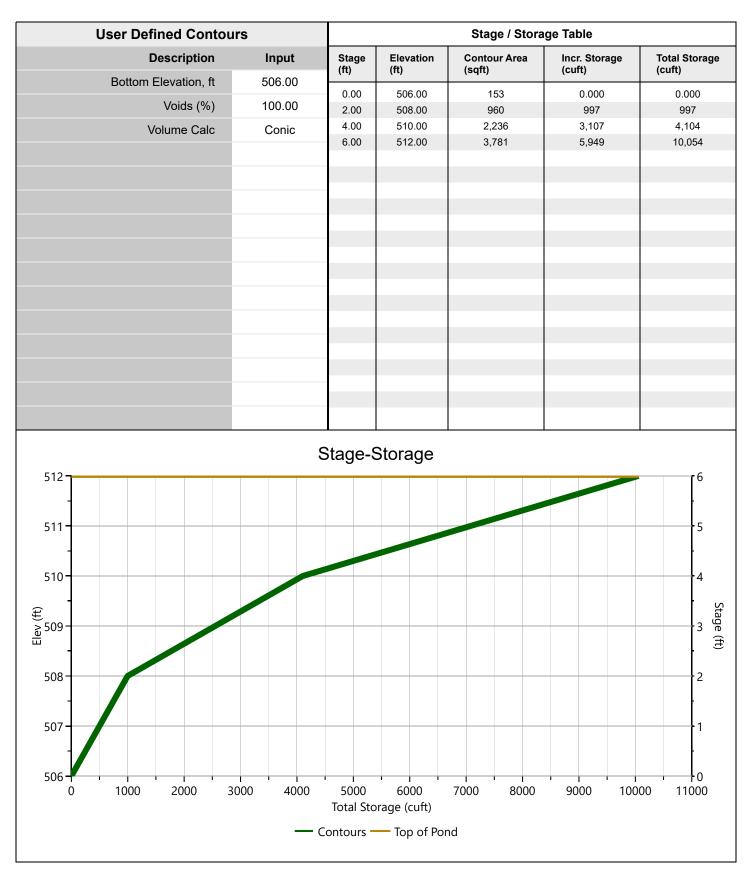

01-11-2022

Hydrology Studio v 3.0.0.21

Pond B2

Project Name: Donnelly - Sugarloaf

01-11-2022



Hydrology Studio v 3.0.0.21

Pond B2

01-11-2022

Stage-Storage

Hydrology Studio v 3.0.0.21

Pond B2

01-11-2022

Stage-Discharge

Cubert / Orifices	Cubernt			Orifice Plate				
Culvert / Orifices	Culvert	1*	2	3		Orific	e Plate	
Rise, in	12	1				Orifice D)ia, in	
Span, in	12	1				No. Or	ifices	
No. Barrels	1	1			Inv	vert Elevat	on, ft	
Invert Elevation, ft	506.00	508.00				Heig	ght, ft	
Orifice Coefficient, Co	0.60	0.60			Orifice	Coefficier	nt, Co	
Length, ft	27							
Barrel Slope, %	.5							
N-Value, n	0.013							
	- ••••		Weirs			_		
Weirs	Riser*	1	2	3	Ancillary			
Shape / Type	Box	Broad Crested			Exfiltration, in/hr			
Crest Elevation, ft	511.25	511.75						
Crest Length, ft	14	10						
Angle, deg		18.4 (3:1)						
Weir Coefficient, Cw	3.3	3.3						
tes through Culvert.		Stage-D	ischarge	1	•			ć
512		Stage-D	ischarge					6
		Stage-D	ischarge					6
		Stage-D	ischarge					6
512		Stage-D	ischarge					ŀ
512		Stage-D	ischarge					ŀ
512- 511- 510-		Stage-D	ischarge					5
512- 511- 510-		Stage-D	ischarge					5
512- 511-		Stage-D	ischarge					•5
512- 511- 510-		Stage-D	ischarge					5
512 511- 510- 509-		Stage-D	ischarge					
512- 511- 510- 509- 508-		Stage-D						
512 511- 510- 509- 508- 1 1 1 1 1 1 1 1		Stage-D						
512 511 510 509 509 508 1 1 1 1 1 1 1 1 1 1 1 1 1								
512 511 510 509 508 1 1 1 1 1 1 1 507 1 1 1 1 1 1 1 507			ischarge					

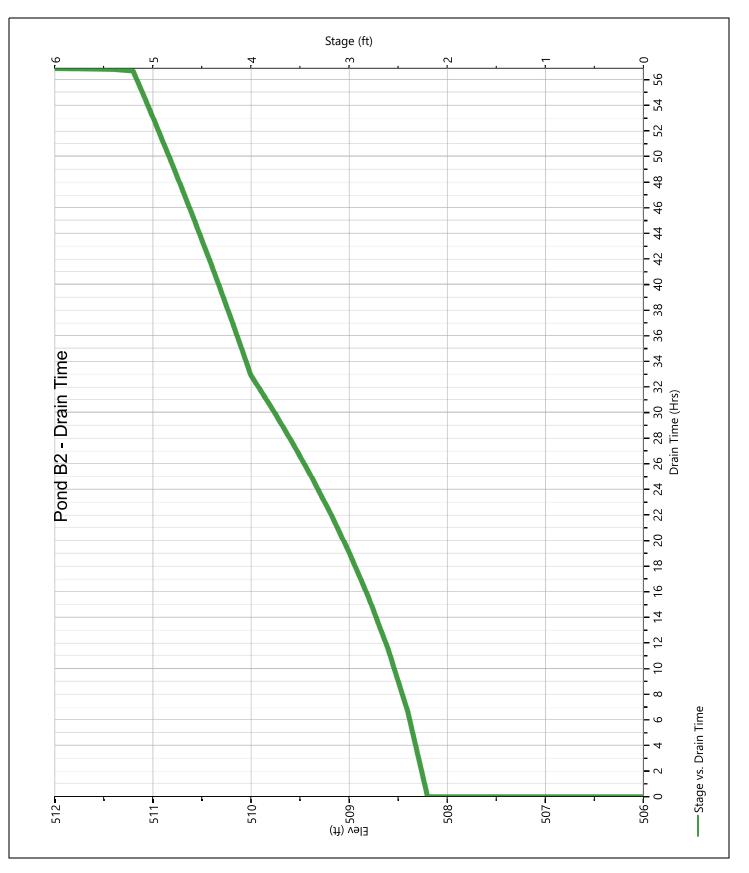
Pond B2

Project Name: Donnelly - Sugarloaf


01-11-2022

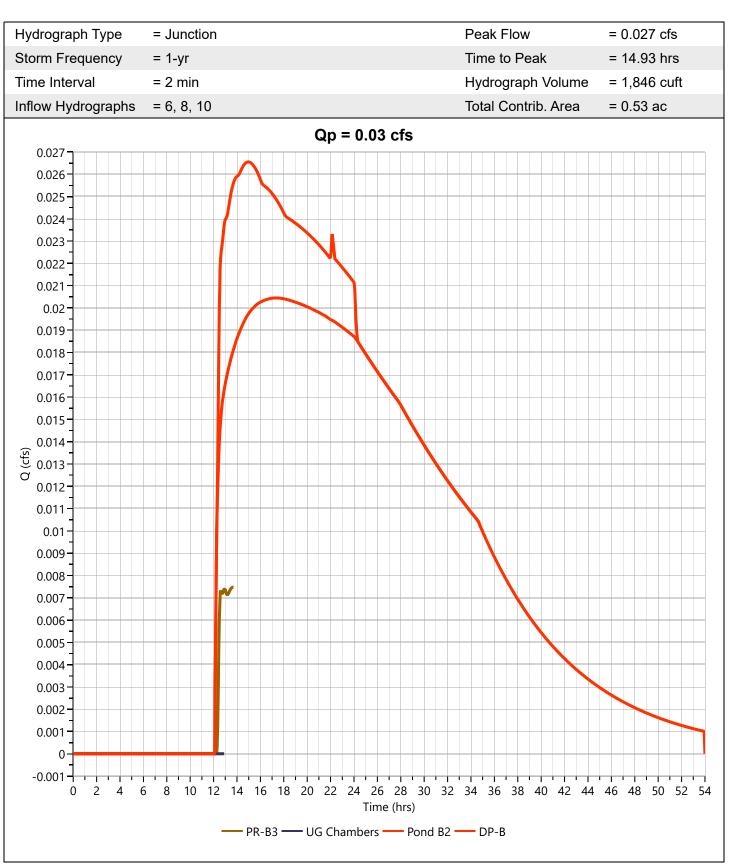
Stage-Storage-Discharge Summary

Stage	Elev.	Storage	Culvert		Drifices, cf	s	Riser		Weirs, cfs		Pf Riser	Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	506.00	0.000	0.000	0.000			0.000	0.000						0.000
2.00	508.00	997	0.000	0.000			0.000	0.000						0.000
4.00	510.00	4,104	0.037 ic	0.037			0.000	0.000						0.037
6.00	512.00	10,054	8.868 ic	0.000			0.000	4.373						13.24


Hydrology Studio v 3.0.0.21

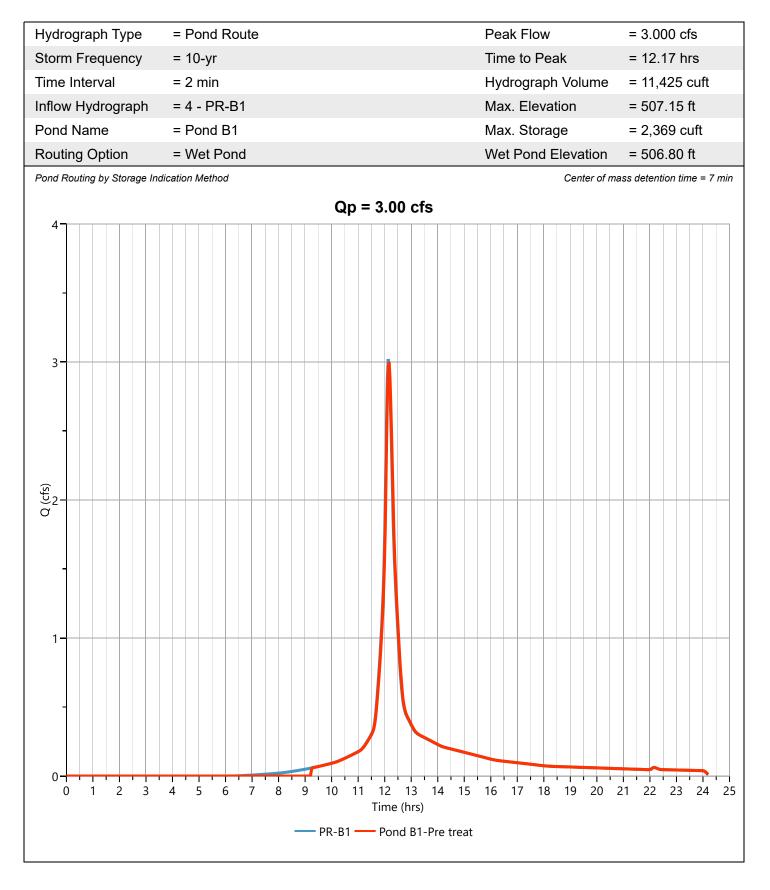
Pond B2

01-11-2022


Pond Drawdown

Hydrology Studio v 3.0.0.21

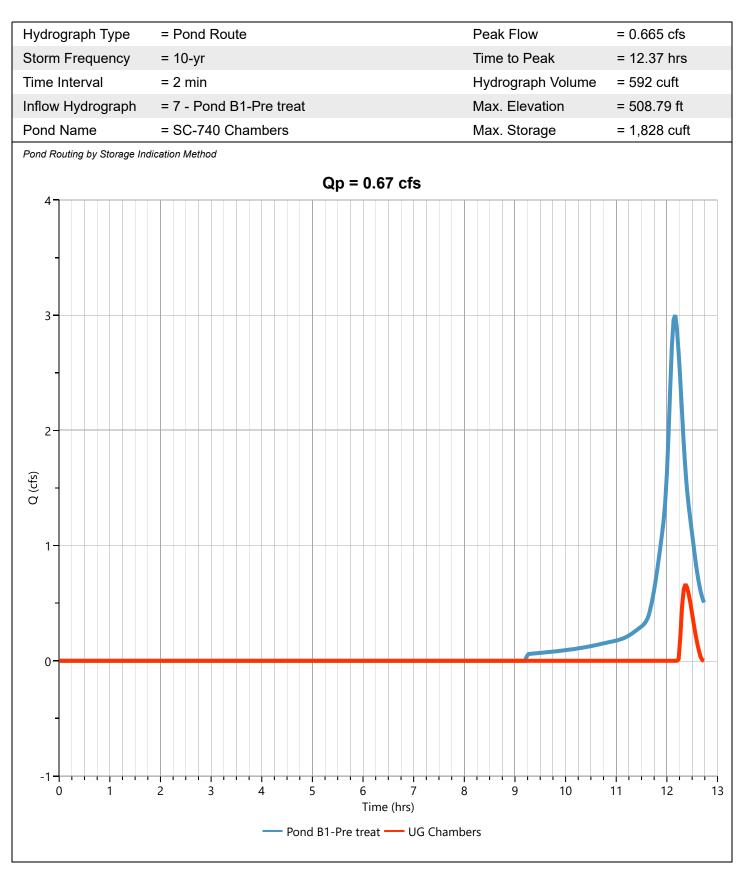
DP-B


01-11-2022

Hydrology Studio v 3.0.0.21

Pond B1-Pre treat

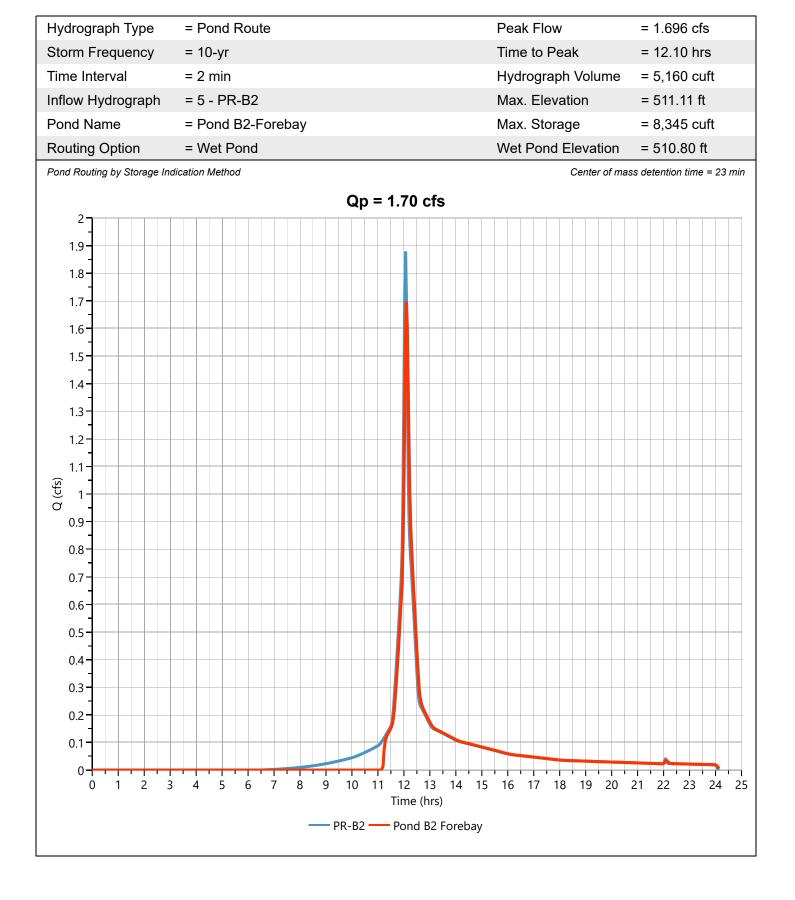
01-11-2022



Hydrology Studio v 3.0.0.21

UG Chambers

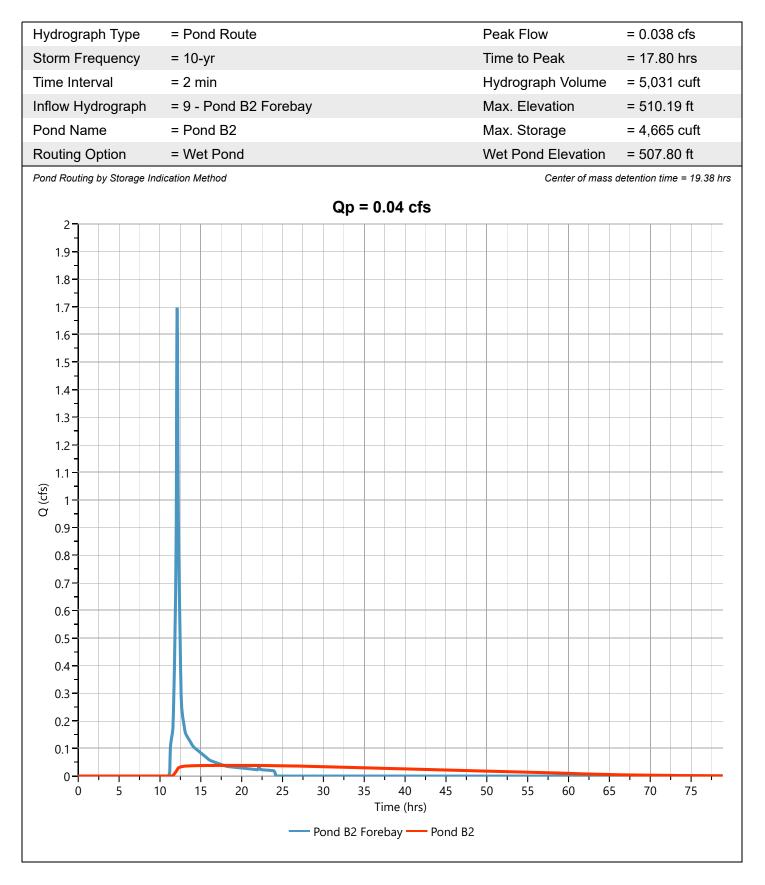
Project Name: Donnelly - Sugarloaf


01-11-2022

Hydrology Studio v 3.0.0.21

Pond B2 Forebay

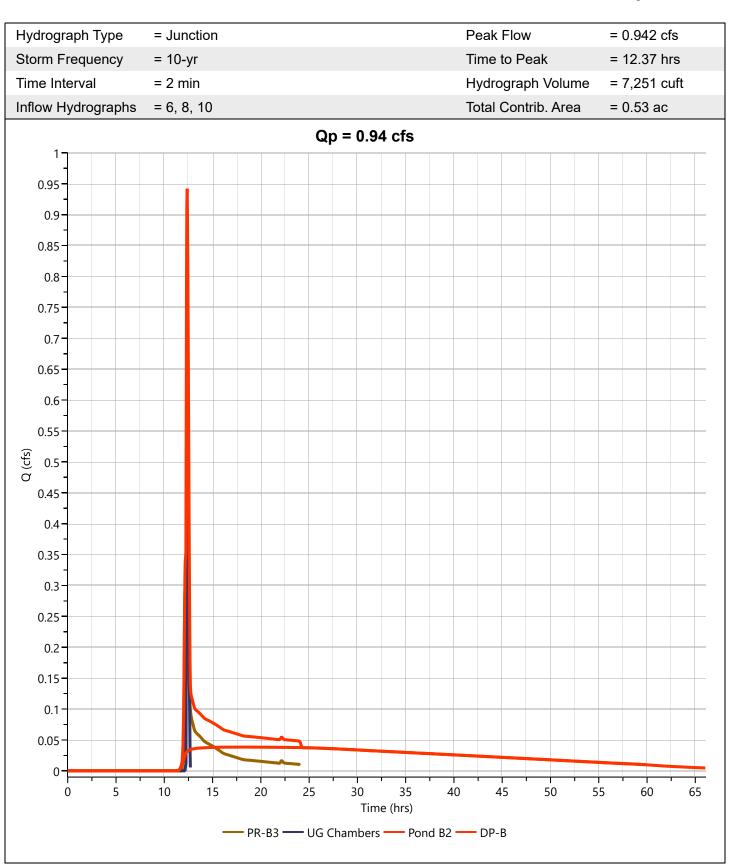
01-11-2022



Hydrology Studio v 3.0.0.21

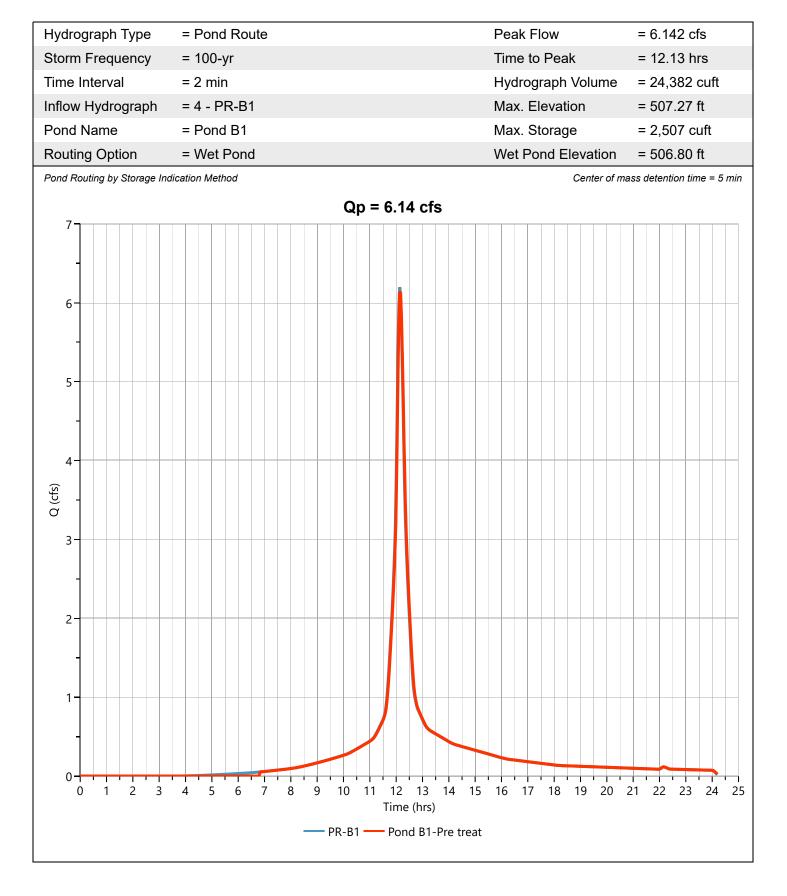
Pond B2

Project Name: Donnelly - Sugarloaf


01-11-2022

Hydrology Studio v 3.0.0.21

DP-B


01-11-2022

Hydrology Studio v 3.0.0.21

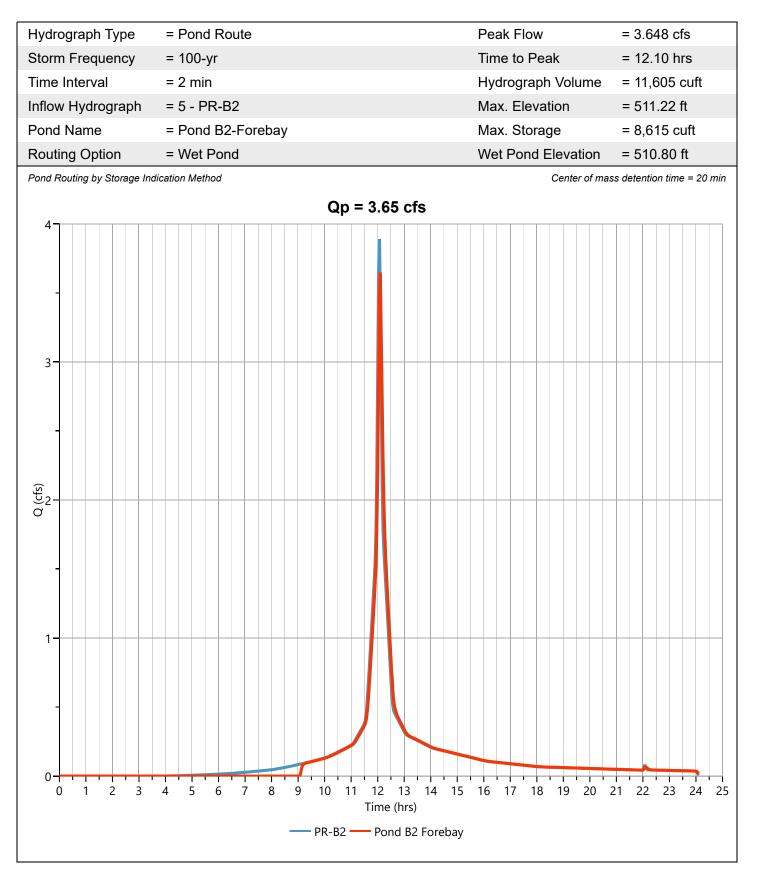
Pond B1-Pre treat

01-11-2022

Hydrology Studio v 3.0.0.21

UG Chambers

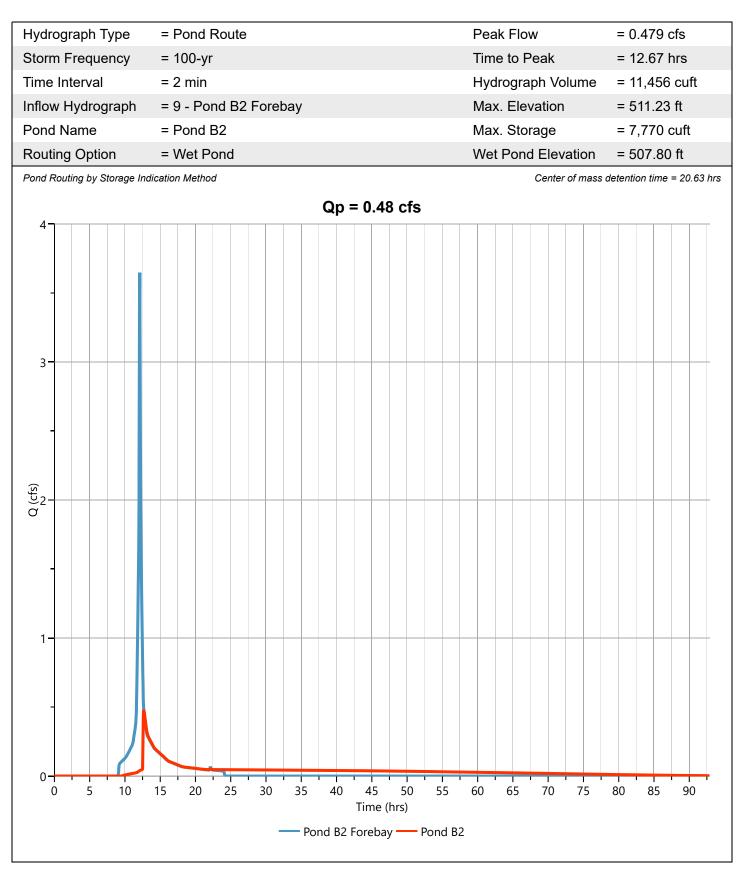
Project Name: Donnelly - Sugarloaf


01-11-2022

ydrograph Type	= Pond Rout	te					eak Flow	ok	= 3.33		
torm Frequency	= 100-yr						ime to Pe		= 12.30 hrs		
ime Interval	= 2 min						ydrograpl				
flow Hydrograph	= 7 - Pond B		at				lax. Eleva		= 510		
ond Name	= SC-740 CI	hambers				N	lax. Stora	ge	= 3,51	0 cuft	
ond Routing by Storage In	dication Method										
7_			Q	p = 3.3	33 cfs						
7											
-											
6-											
0											
5-											
4											
-											
-											
3											
2											
-											
2											
-											
1											
0											
-1											
0 1	2 3	4	5	6 Tim	7 7	8	9	10	11	12	
					ie (hrs)	Chambers					

Hydrology Studio v 3.0.0.21

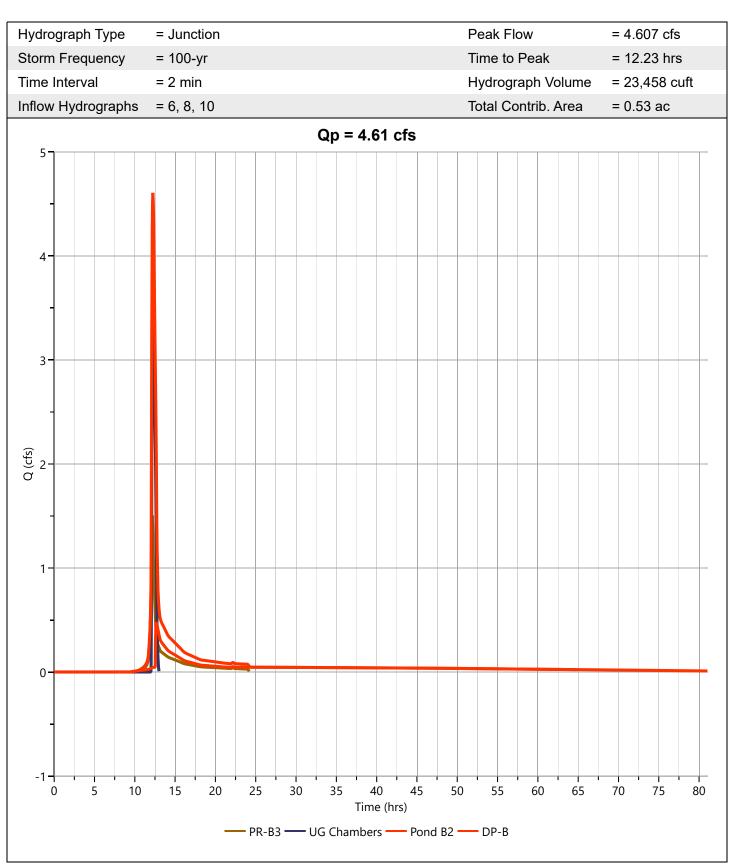
Pond B2 Forebay


01-11-2022

Hydrology Studio v 3.0.0.21

Pond B2

01-11-2022


Hydrograph Report

Hydrology Studio v 3.0.0.21

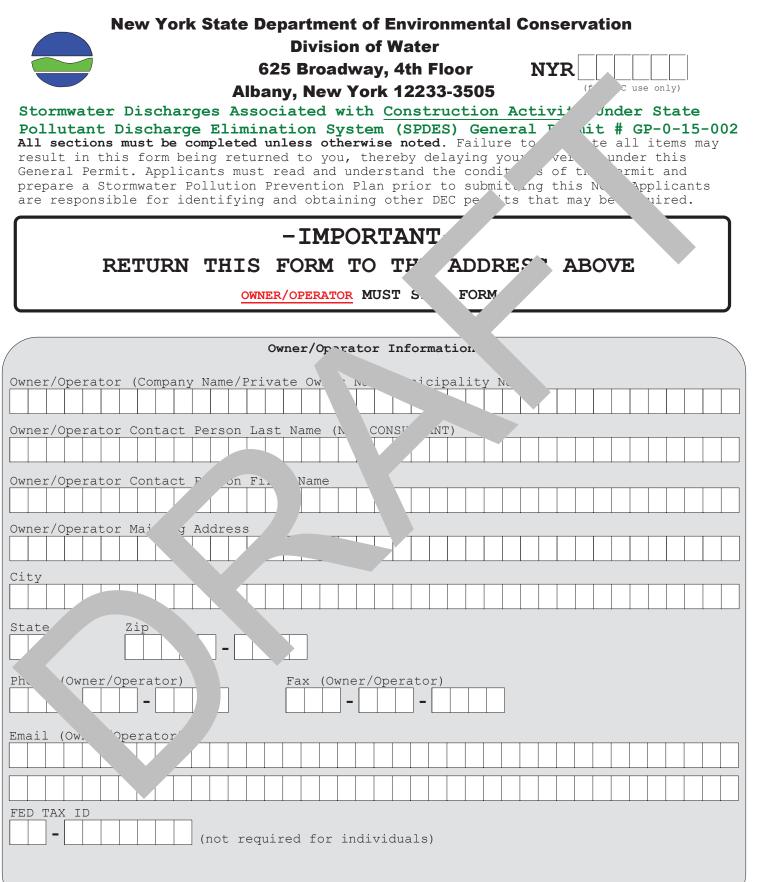
DP-B

01-11-2022

Hyd. No. 11

This page is left intentionally blank

APPENDIX 10 CONSTRUCTION SITE INSPECTION FORM, NOTICE OF INTENT, AND MS4 ACCEPTANCE


This page is left intentionally blank

SWPPP INSPECTION REPORT

	W.O. No.:	D	ate:	Of Disturbance?			Of
PROPERTIES	Project Name:			Weather Conditions:	Dry	Rain	Snow
Achieving Successful Results	Name.			Soil Conditions:	Dry 🗌		Saturated
with Innovative Designs	Location:			Arrival Time : Departing Time:		Photograp	hs Taken?
0				Documents on-s	ito?		
Owner:		none:				SWPPP:	
Contractor:		none:		Weekly Inspections:		NOI:	
1. Description of current activities onsite and phase of	construction (attach ske	etch showing areas o	f stabilization, current w	vork, and p	photo loca	tions):
2. Description of the condition of the runoff at all points	s of discharge	from 3	Description of the c	condition of all natural su	urface wat	ter hodies	located
the construction site (including onsite conveyance sys				adjacent to the constru			locatod
	,						
 Identify all erosion and sediment control practices the and/or maintenance: 	nat require rep			and sediment control pr nctioning as designed:	actices the	at were no	t installed
 Identify current status of construction for all post-co management practices: 	nstruction stor) required to erosion an stormwater manageme			neasures
Was the owner and contractor(s) notified of	the deficiencie	es and ren	airs needed within a	one (1) business dav?		Yes	No
				ified Inspector			
Notice: GP-02-01			Qual				
This inspection was performed solely for the purpose of determining compliance							
with NYSDEC SPDES General Permit: GP-10-001	Ν	Name an	d Title		Signa	ature	

This page is left intentionally blank

NOTICE	OF	INTENT
--------	----	--------

Project Site Informati	on
Project/Site Name	
Street Address (NOT P.O. BOX)	
Side of Street O North O South O East O West	
City/Town/Village (THAT ISSUES BUILDING PERMIT)	
State Zip County N Y	DEC Regio.
Name of Nearest Cross Street	
	rojectRelation to Cross StreetNorthTthC EastC West
Tax Map Numbers Section-Block-Parcel	Numbers
	site in NYTM Units. To do this you the DEC website at:
www.dec gov/: aps/s. /viewer.	htm
	to the tool boxes on the top and r site and a new window containing ese coordinates into the boxes
X Cool ates (Easting) Y 4	Coordinates (Northing)
2. What is the of this construction project?	
O New Construction	
 Redevelopment with increase in impervior Redevelopment with no increase in impervior 	

З.	Select	the	predo	minant	land	l use	for	both	pre	and	post	development	conditions.	
	SELECT	ONLY	ONE	CHOICE	FOR	EACH								

Pre-Development Existing Land Use	Post-Development Future Land Use
⊖ FOREST	O SINGLE FAMILY HOME Number of Lots
\bigcirc pasture/open land	O SINGLE FAMILY SUBDIVISIC
○ CULTIVATED LAND	O TOWN HOME RESIDENTIAL
○ SINGLE FAMILY HOME	○ MULTIFAMILY RESIDE'
\bigcirc single family subdivision	O INSTITUTIONAL/SC
\bigcirc Town home residential	○ INDUSTRIAL
○ MULTIFAMILY RESIDENTIAL	○ COMMERCIAL
○ INSTITUTIONAL/SCHOOL	⊖ MUNICIP7
○ INDUSTRIAL	○ ROAD/ ./WAY
○ COMMERCIAL	O RECSPOT "S FIELD
○ ROAD/HIGHWAY	O B PATH/TRAT
○ RECREATIONAL/SPORTS FIELD	OLINL 'TII' (water, sewer, gas, etc.)
○ BIKE PATH/TRAIL	O PARKIN
O LINEAR UTILITY	O CLEARING, DING ONLY
O PARKING LOT	O DEMOLITION, REDEVELOPMENT
O OTHER	TLL DRILLING VIVITY *(Oil, Gas, etc.)
*Note: for gas well drillinhigh volu	araulic fractured wells only
disturbed area. d to nearco Total Sito Tot rea To Exist	rea to be disturbed;
you plan to dist more than 5 acres of	soil at any one time? O Yes O No
	Soil Group(HSG) at the site.
7. Is this a phased project?	\bigcirc Yes \bigcirc No
8. Enter the planned start and end dates of the disturbance activities.	End Date / - / /

9. Identify the nearest surface waterbody(ies) to which construction site discharge.	runoff w	ill
Name		
9a. Type of waterbody identified in Question 9?		
O Wetland / State Jurisdiction On Site (Answer 9b)		
O Wetland / State Jurisdiction Off Site		
O Wetland / Federal Jurisdiction On Site (Answer 9b)		
O Wetland / Federal Jurisdiction Off Site		
O Stream / Creek On Site		
O Stream / Creek Off Site		
O River On Site		10
O River Off Site 9b. How the wetland	identifie	d?
O Lake On Site O Regulator o		
O Lake Off Site	tant	
O Other Type On Site J Deli. d by Army C	orps of E	Ingineers
O Other Type Off Site Other (identify)		
10. Has the sur waterbody a guestion 9 been identified as a	0	0
303 (d) segmen Apper 02?	\bigcirc Yes	() No
11. Is the original dimension of the Watersheds identified in A^{r} GP-0-1 2?	○ Yes	○ No
)
17 Is the project ated in s of the watershed	-	-
areas associated th AA and AA-S classified waters?	\bigcirc Yes	() No
<pre>f no, skip quest 13.</pre>		
13. Do his const cion activity disturb land with no		
exis imper us cover and where the Soil Slope Phase is ident. I for F on the USDA Soil Survey?	\bigcirc Yes	\bigcirc No
If Yes, is the acreage to be disturbed?		
·		

14. Will the project disturb soils within a State regulated wetland or the protected 100 foot adjacent O Yes O No area?

15.	Does the site runoff enter a separate storm sewer system (including roadside drains, swales, ditches, OYes OY culverts, etc)?	No O	Unknown
16.	What is the name of the municipality/entity that owns the separate system?	storm	sewer
17.	Does any runoff from the site enter a sewer classific O Yes O Mas a Combined Sewer?	oR	'nknown
18.	Will future use of this site be an agriculture for forerty as defined by the NYS Agriculture and Markets I	0 Ye	es 🕐 No
19.	Is this property owned by a state authority, st ac y, federal government or local government?	0 Ye	es \bigcirc No
20.	Is this a remediation project be under a Depart approved work plan? (i.e. CERCLA, TRA, tary Cleanu, Agreement, etc.)	<u>)</u> Үе	es 🔿 No
21.	Has the required Erosion and Sedimen 'on' component of the SWPPP been developed formance we current NYS Standards and Specific for Eros and Sediment Control (aka Blue Book)?	0 Ye	es () No
22.	Does this conjuction activity require a development of a SWPPP that judes the restruction stormwater management practice complet (i.e., Water Quality and Quantity Control as/techniques, If No, skip ques .3 and 27-39.	0 Ye	es 🔿 No
23.	the polynstruct stormwater management practice component i the SWPPP devel in conformance with the current NYS Stormwater Man. ent Des Manual?	0 Ye	es 🔿 No

<pre>24. The Stormwater Pollution Prevention Plan (SWPPP) was prepared by:</pre>
<pre> Soil and Water Conservation District (SWCD) Registered Landscape Architect (R.L.A) Certified Professional in Erosion and Sediment Control (CPESC) Owner/Operator SWPPP Preparer SWPPP Preparer</pre>
Registered Landscape Architect (R.L.A) Certified Professional in Erosion and Sediment Control (CPESC) Owner/Operator Other SWPPP Preparer
<pre> Certified Professional in Erosion and Sediment Control (CPESC) Owner/Operator Other SWPPP Preparer U U U U U U U U U U U U U U U U U</pre>
Owner/Operator Other SWPPP Preparer
Other
SWPPP Preparer
Contact Name (Last, Space, First)
Mailing Address
City
State Zip
Phone F
Email
SWPPP Preparer Certific
I he with at Stormwater Pollution Prevention Plan (SWPPP) for the roject when priced in accordance with the terms and conditions of
GP-0-15-002 Withern I understand that certifying false, incorrect inaccurate in ation is violation of this permit and the laws of the
state of New York could subject me to criminal, civil and/or
Ministrative proceedings.
First Name MI
Signature
Date

25.	Has a construction sequence schedule for the practices been prepared?	planned management O Yes O No
26.	Select all of the erosion and sediment contr employed on the project site: Temporary Structural	ol practices that will be Vegetative M ares
	<u>_</u>	
	\bigcirc Check Dams	O Brush Matti
	\bigcirc Construction Road Stabilization	O Dune Stab. Ization
	○ Dust Control	O Grass Naterway
	\bigcirc Earth Dike	○ Mı* ⊥ng
	\bigcirc Level Spreader	C stecting Vegetation
	○ Perimeter Dike/Swale	Recreation _a Improvement
	\bigcirc Pipe Slope Drain	ding
	\bigcirc Portable Sediment Tank	⊖ Sc
	○ Rock Dam	○ Stran Bale Dike
	○ Sediment Basin	O Streamba rotection
	○ Sediment Traps	mporary 2 Le
	○ Silt Fence	хо ₂ Т
	O Stabilized Construction Entrance	○ Vegetating Waterways
	O Storm Drain Inle ion	Permanent Structural
	○ Straw/Hay Ba' /ike	\bigcirc Debris Basin
	O Temporary .ess Waterw Crossing	O Diversion
	O Temporar, ormdrain	○ Grade Stabilization Structure
	○ Temporary S.	O Land Grading
	O Turbidity Curt.	<pre>O Lined Waterway (Rock)</pre>
		<pre>O Bined Waterway (ROCK) O Paved Channel (Concrete)</pre>
	Richardari	 Paved Flume
	Biotechnic	O Retaining Wall
	○ Brush Matting	O Riprap Slope Protection
	Wattling	O Rock Outlet Protection
		 Streambank Protection
Oth	er	
·		

Post-construction Stormwater Management Practice (SMP) Requirements

Completion of Questions 27-39 is not required Important: if response to Question 22 is No.

27.	Identify all site planning practices that were used to prepare the final site plan/layout for the project.
	O Preservation of Undisturbed Areas
	O Preservation of Buffers
	O Reduction of Clearing and Grading
	O Locating Development in Less Sensitive Areas
	O Roadway Reduction
	O Sidewalk Reduction
	O Driveway Reduction
	O Cul-de-sac Reduction
	O Building Footprint Reduction
	O Parking Reduction

- Indicate which of the following il re-requirements in Section 5.1.6("Sc Restora. 27a. Indicate which of the following on criteria as used to address the of the Design Manual (2010 version).
 - O All disturbed areas ill be restol in Ccordance with the Soil Restoration required in Table of the Design Manual (see page 5-22).

O Compacted ar were con ered as in rvious cover when calculating the **WQv Requir** and the contacted areas in relation acted areas in relation acted areas in that is one level less permeable than exist in condition by drology analysis.

Protte total 28. Fer Quality Volume (WQv) required for this project (based on lan/la · · ·

.otal WQv 1 acre-fe.

red

'entify the RR chniques (Area Reduction), RR techniques (Volume Reduction) and 29. dard SMPs .h RRv Capacity in Table 1 (See Page 9) that were used to reduce the tal WO equired(#28).

e in Table 1 the total impervious area that contributes runoff to each Also, techniq practice selected. For the Area Reduction Techniques, provide the total contributing area (includes pervious area) and, if applicable, the total impervious area that contributes runoff to the technique/practice.

Note: Redevelopment projects shall use Tables 1 and 2 to identify the SMPs used to treat and/or reduce the WQv required. If runoff reduction techniques will not be used to reduce the required WQv, skip to question 33a after identifying the SMPs.

Runoff Reduction (RR) Techniques and Standard Stormwater Management Practices (SMPs)

	Total Contributing	Total Contributing
RR Techniques (Area Reduction)	<u>Area (acres)</u>	Impervious Area(acres)
\bigcirc Conservation of Natural Areas (RR-1) .	ar	nd/or
O Sheetflow to Riparian Buffers/Filters Strips (RR-2)	ar	nd/or
○ Tree Planting/Tree Pit (RR-3)		nd /
\bigcirc Disconnection of Rooftop Runoff (RR-4)	··	or
RR Techniques (Volume Reduction)		
\bigcirc Vegetated Swale (RR-5) \cdots		
\bigcirc Rain Garden (RR-6)	· · · · · · · · · · · · · · · · · · ·	
\bigcirc Stormwater Planter (RR-7)		
\bigcirc Rain Barrel/Cistern (RR-8)		····
○ Porous Pavement (RR-9)		····
\bigcirc Green Roof (RR-10)		· · · · · · · · · · · · · · · · · · ·
Standard SMPs with RRv Capacity		
\bigcirc Infiltration Trench (I-1) $\cdots \cdots \cdots$		··
\bigcirc Infiltration Basin (I-2)		····
○ Dry Well (I-3)		
○ Underground Infiltrat ⁺ +em (I-4)		····
OBioretention (F-5)		
○ Dry Swale (0-1)		
Standard SMPs		
O Micropool Extended .tion (P-1)		••••
○ Wet	•••••••••••••••••	····
Extended tion		· · · · · · · · · · · · · · · · · · ·
Aultiple Pond Sy. 1 (P-4)		
Pocket Pond (P-5)		
Gace Sand Filte F-1) ·····		
O Una ound Sand ter (F-2)		
OPerime San Iter (F-3)		····
○ Organic ⊨ (F-4)		
○ Shallow Wetland (W-1)		
\bigcirc Extended Detention Wetland (W-2)		
○ Pond/Wetland System (W-3)		
○ Pocket Wetland (W-4)		
○ Wet Swale (O-2)		

0762089822
Table 2 - Alternative SMPs (DO NOT INCLUDE PRACTICES BEING USED FOR PRETREATMENT ONLY)
Alternative SMP Total Contributing Impervious Area(acres)
O Hydrodynamic
O Wet Vault • <td< td=""></td<>
O Other O Other
Provide the name and manufacturer of the Alternative SMPs e. proprietary practice(s)) being used for WQv treatment. Name Manufacturer Manufacturer
Note: Redevelopment projects which do not use RR te 'ques, 'l use questions 28, 29, 33 and 33a to provide SM red tal WQv required and total WQv provided for the proj.
30. Indicate the Total RRv provided ' RR techniques a/Volume Reduction) and Standard SMPs with RRv capacity in question
Total RRv provided
31. Is the Total RRv , idea 0) greate han or equal to the total WQv requir (#28).
If Yes, go to Juestion 36. If No, go to restion 32
32. Pro Minimum required based on HSG. equired (P) (0.95) (Ai) /12, Ai=(S) (Aic)]
Minimum RRv Re red
32a. 1. > Total RR ⁻ rovided (#30) greater than or equal to the Min. RRv Re red (#32)? O No
<pre>If Yes, question 33. Note: the space provided in question #39 to summarize the specific site limitations and justification for not reducing 100% of WQv required (#28). A detailed evaluation of the specific site limitations and justification for not reducing 100% of the WQv required (#28) must also be included in the SWPPP.</pre>
If No, sizing criteria has not been met, so NOI can not be processed. SWPPP preparer must modify design to meet sizing criteria.

33.	Identify the Standard SMPs in Table 1 and, if applicable, the Alternative SMPs in Table 2 that were used to treat the remaining total WQv(=Total WQv Required in 28 - Total RRv Provided in 30).
	Also, provide in Table 1 and 2 the total <u>impervious</u> area that contributes runoff to each practice selected.
	<u>Note</u> : Use Tables 1 and 2 to identify the SMPs used on Redevelopm projects.
33a.	Indicate the Total WQv provided (i.e. WQv treated) by the sidentified in question #33 and Standard SMPs with RRv Car cy 1 ified in question 29.
	WQv Provided
<u>Note</u> :	For the standard SMPs with RRv capacity, the ' provided by each practice = the WQv calculated using the contributing inage area the practice - RRv provided by the practice. (See Table 5 in Desic anual)
34.	Provide the sum of the Total RRv provided (#30) a the WQv provided (#33a).
35.	Is the sum of the RRv provided (;) . WQv provide (#33a) greater than or equal to t. tota. ~uired (# O Yes O No
	If Yes, go to question 36. If No, sizing criteria has not been t, for OI can not be processed. SWPPP prepromust modify to into meet sizing criteria.
36.	Provide the tot Channel F lection St ge Volume (CPv) required and provided or s ct waiver a), if appl ble.
	Require CPv Provided
	acre-feet acre-feet
36a. 1	Provide c el protection has been waived because:
	O Site arges otly to tidal waters or a fill order of rger stream.
	O Reduction the total CPv is achieved on site through ru f reduction techniques or infiltration systems.
_	
37.	ide the Over ik Flood (Qp) and Extreme Flood (Qf) control criteria or set waiver i), if applicable.
	Total Overbank Flood Control Criteria (Qp)
	Pre-Development Post-development CFS CFS CFS
	Total Extreme Flood Control Criteria (Qf)
	Pre-Development Post-development
	CFS CFS

37a.	<pre>The need to meet the Qp and Qf criteria has been waived because: O Site discharges directly to tidal waters or a fifth order or larger stream. O Downstream analysis reveals that the Qp and Qf controls are not required</pre>
38.	Has a long term Operation and Maintenance Plan for the post-construction stormwater management practice(s) been O Yes O No developed? If Yes, Identify the entity responsible for the long term Operation and Maintenance
39.	Use this space to summarize the specific site is th

40.	Identify other DEC permits, existing and new, that are required for this project/facility.		
	O Air Pollution Control		
	○ Coastal Erosion		
	O Hazardous Waste		
	○ Long Island Wells		
	○ Mined Land Reclamation		
	O Solid Waste		
	O Navigable Waters Protection / Article 15		
	O Water Quality Certificate		
	O Dam Safety		
	O Water Supply		
	O Freshwater Wetlands/Article 24		
	O Tidal Wetlands		
	○Wild, Scenic and Recreational 1 e		
	○ Stream Bed or Bank Protection / icle 15		
	○ Endangered or Threatened Species(1 \den+ Take Perit)		
	O Individual SPDES		
	OSPDES Multi-Se f GP N		
	O Other		
	O None		
41.	Joes this program requiners US Army Corps of Engineers Or Wetland Permit. If Yes, Indicate ze of Impact. Impact. Impact.	Yes	O No
42.	<pre>this project s ject to the requirements of a regulated, 'itional land e control MS4? (, , skip qr .ion 43)</pre>	Yes	\bigcirc No
43.	Has the SWPPP Acceptance" form been signed by the principal executive ficer or ranking elected official and submitted along with this NOI?	Yes	() No
44.	If this NOI is being submitted for the purpose of continuing or transferm	ring	

44. If this NOI is being submitted for the purpose of continuing or transferring coverage under a general permit for stormwater runoff from construction activities, please indicate the former SPDES number assigned. N Y R

Owner/Operator Certification

I have read or been advised of the permit conditions and believe that I understand them. I also understand that, under the terms of the permit, there may be reporting requirements. I hereby certify that this document and the corresponding documents were prepared under my direction or supervision. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. I further understand that coverage under the general permit will be identified in the acknowledgment that I will receive as a result of submitting this NOI and can be as long as sixty (60) business days as provided for in the general permit. I also unter that, by submitting this NOI, I am acknowledging that the SWPPP has been developed and will be first element of construction, and agreeing to comply with all the terms and conditions of the general permit for which this NOI is being submitted.

Print First Name	MI
Print Last Name	
Owner/Operator Signature	
	Date

NEW YORK STATE OF OPPORTUNITYDepartment of Environmental ConservationNYS Department of Environmental Conservation Division of Water 625 Broadway, 4th Floor Albany, New York 12233-3505
MS4 Stormwater Pollution Prevention Plan (SWPPP) Acceptance Form for
Construction Activities Seeking Authorization Under SPDES General Permit *(NOTE: Attach Completed Form to Notice Of Intent and Submit to Address Above)
I. Project Owner/Operator Information
1. Owner/Operator Name:
2. Contact Person:
3. Street Address:
4. City/State/Zip:
II. Project Site Information
5. Project/Site Name:
6. Street Address:
7. City/State/Zip:
III. Stormwater Pollution Prevention Plan (SWPPP) Review and Acceptance Information
8. SWPPP Reviewed by:
9. Title/Position:
10. Date Final SWPPP Reviewed and Accepted:
IV. Regulated MS4 Information
11. Name of MS4:
12. MS4 SPDES Permit Identification Number: NYR20A
13. Contact Person:
14. Street Address:
15. City/State/Zip:
16. Telephone Number:

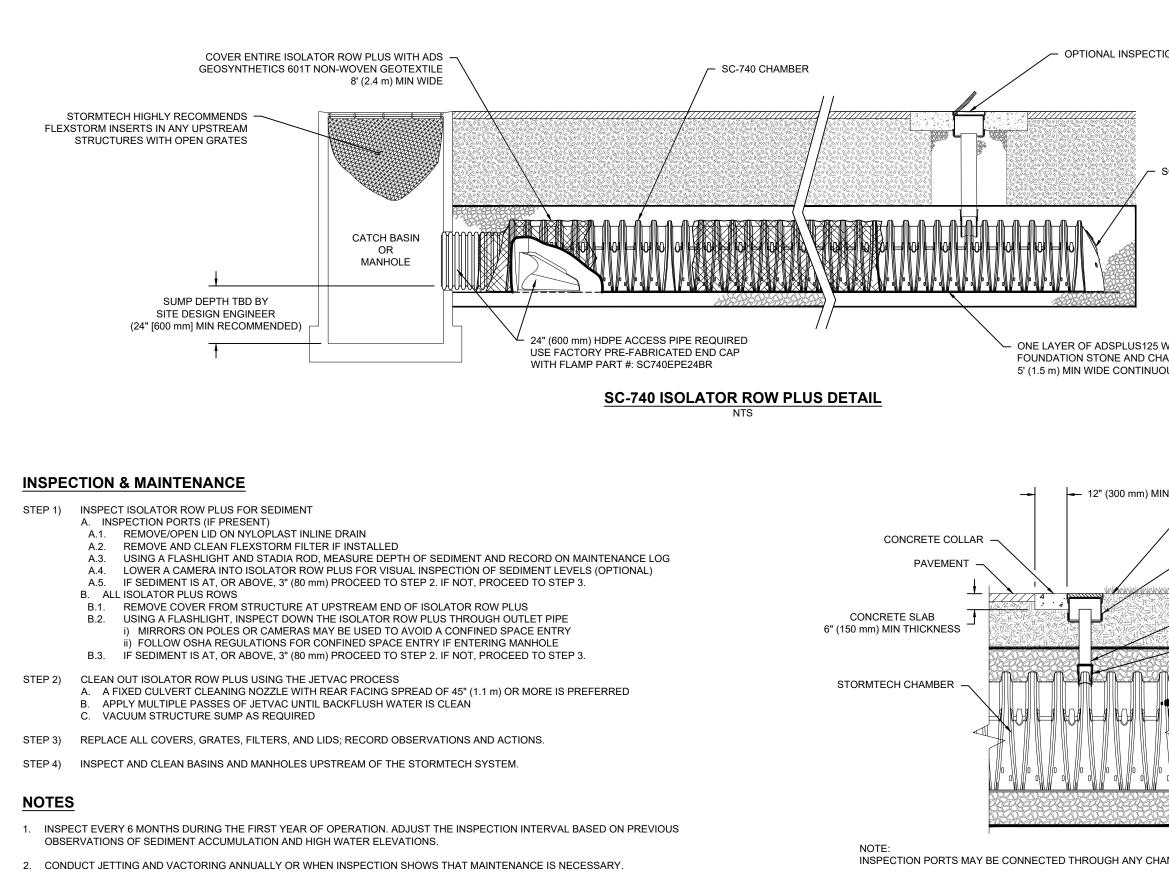
MS4 SWPPP Acceptance Form - continued

V. Certification Statement - MS4 Official (principal executive officer or ranking elected official) or Duly Authorized Representative

I hereby certify that the final Stormwater Pollution Prevention Plan (SWPPP) for the construction project identified in question 5 has been reviewed and meets the substantive requirements in the SPDES General Permit For Stormwater Discharges from Municipal Separate Storm Sewer Systems (MS4s). Note: The MS4, through the acceptance of the SWPPP, assumes no responsibility for the accuracy and adequacy of the design included in the SWPPP. In addition, review and acceptance of the SWPPP by the MS4 does not relieve the owner/operator or their SWPPP preparer of responsibility or liability for errors or omissions in the plan.

Printed Name:

Title/Position:


Signature:

Date:

VI. Additional Information

(NYS DEC - MS4 SWPPP Acceptance Form - January 2015)

APPENDIX 11 SYSTEM MAINTENANCE AND OPERATION PROCEEDURES, CONSTRUCTION WASTE MANAGEMENT & SPILL PREVENTION PLANS

4" PVC INSPECTION PORT
(SC SERIES CHAMBE
NTS

A 4640 TRUEMAN BLVD HILLIARD, OH 43026 1-800-733-7473 Chamber System	ER CORRUGATION CREST.	\triangleright	 VIDTH CONCRETE COLLAR NOT REQUIRED FOR UNPAVED APPLICATIONS 8" NYLOPLAST INSPECTION PORT BODY (PART# 2708AG4IPKIT) OR TRAFFIC RATED BOX W/SOLID LOCKING COVER 4" (100 mm) SDR 35 PIPE 4" (100 mm) INSERTA TEE TO BE CENTERED ON CORRUGATION CREST 	VEN GEOTEXTILE BETWEEN BERS FABRIC WITHOUT SEAMS		-740 END CAP	I PORT
4640 TRUEMAN BLVD HILLIARD, OH 43026 1-800-733-7473 Chamber System							
1-800-733-7473 StormTech Chamber System		IEMAN BLVD	(DONNELLY SUGARLOAF
Chamber System		-7473	StormTech			TOWN OF CHESTER NV	HESTED NV
	HEET		Chamber System			DATE:	DRAWN: PP
888-892-2694 WWW.STORMTECH.COM DATE DRW CHK DESCRIPTION	-		-	DRW	DESCRIPTION	PROJECT #:	CHECKED: N/A

CONSTRUCTION WASTE MANAGEMENT & SPILL PREVENTION PLAN

Early in the construction activities, land clearing materials will be collected and recycled either off site or re-used on site as erosion control materials. During early phase construction activities, cardboard, concrete, metal, wood and general trash collection dumpsters will be on site for collection and processing. As the project progresses, concrete dumpsters will be changed over to drywall collection, site clearing dumpsters will be changed over to finish material containers, etc. Typically, (4) open top containers will be on site for the duration of the project. General waste and cardboard/paper containers will be on site for the duration of the project. The contractor will be responsible for organizing and placing containers on site and timely removal/replacement when containers are filled to capacity. As necessary, the contractor will provide areas of collection or hoppers for subcontractors to utilize for intermediate storage of construction and demolition (CD) materials. All containers will be clearly identified with signage indicating stored materials.

Those CD materials generated on this project will be salvaged and re-processed as listed. The contractor will research available processing sources specific to the job site and make all trades aware of project qualifying CD recyclable materials as follows:

Brick: Materials will be stored on site and palletized by processor who will resell as product.

<u>Cardboard</u>: Materials will be separated on the jobsite and stored within dedicated on-site dumpster and delivered loose to processor. Processor will bale materials and deliver/resell to end market users.

<u>Concrete:</u> Scrap and loose materials will either be crushed on site and used for aggregate or stored within dedicated on-site dumpster and delivered to processor. Processor will reuse or resell materials as clean fill back or crush and use for aggregate.

<u>Metals</u>: Materials will be sorted and stored within dedicated on-site dumpster and delivered to processor. Processor will sell materials to metal recyclers (steel, aluminum, brass, copper, lead, stainless).

<u>Stone and Granite:</u> Materials will be collected on site in piles or containers and processor will palletize and haul materials. Processor will re-sell as product or crushed and use as aggregate.

<u>Plastic, paper goods, and aluminum cans:</u> Materials will be collected on job site within construction trailers, cantina areas, etc. and stored in on-site trailers. Materials will be hauled/recycled by processor.

<u>Drywall</u>: Waste materials will be sorted and collected in dedicated on-site containers or materials will be ground on site and used as an erosion control product. Hauled materials to processor will be processed as a soil amendment or used in alternate fuel mixture.

<u>Wood or Lumber</u>: Materials will be sorted and stored on-site within dedicated on-site containers and either resold as retail lumber by processor or ground and mixed with commercial land

clearing and/or approved materials for erosion control applications. Lumber will need to be clean, no paint or other wood treatment.

<u>Land Clearing Debris:</u> Woody materials (stumps, large limbs) will be ground on-site and used for soil erosion control products or hauled to processor to be ground as re-sold as erosion control products.

<u>Roofing Shingles:</u> Materials will be stored on site and processed as temporary road base, mixed into hot asphalt mix or used as alternate fuel blend or hauled offsite via appropriate methods to an authorized disposal/recycling facility.

<u>Fuel Tanks</u>: On site storage of fuel chemicals shall be equipped with a spill kit. The contractor must provide secondary containment for storing any hazardous chemicals on site. <u>Equipment storage</u>: All equipment stored on site shall be inspected daily by the contractor for any oil or lubricant spills or leaks. Any leaks shall be repaired immediately. In addition all equipment must be closely inspected prior to working in the Town R.O.W.

<u>Spill Response:</u> The contractor shall clean all spills immediately and shall report all spills to the New York State Department of Environmental Conservation.

This Plan will be displayed in the construction jobsite trailer at all times.