Traffic Study

CHESTER HILL

TOWN OF CHESTER ORANGE COUNTY, NEW YORK

Prepared for:

Chester Hill Holdings

Prepared by:

Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516 (845) 265-4400

April 27, 2012

Traffic Study TABLE OF CONTENTS

<u>Page</u>

LIST OF TABLES	<u>Page</u>
6.0 Summary	11
5.0 Future Build Traffic Conditions	8
4.0 Future No-Build Traffic Conditions	6
3.0 Existing Conditions	4
2.0 Transportation Network	2
1.0 Introduction	1

Table 1:	Existing Condition Level of Service Summary	5
Table 2:	Pending or Approved Projects in Site Vicinity	6
Table 3:	No-Build Condition Level of Service Summary	7
Table 4:	Project Trip Generation Summary	8
Table 5:	Build Condition Level of Service Summary	10

Appendices

Appendix A:	Figures
Appendix B:	Level of Service Criteria
Appendix C:	Level of Service Calculations

1.1 Introduction

This traffic report has been prepared to assess the traffic generated by the future mining operation of Chester Hill, LLC. The proposed mining operation will be located off Black Meadow Road just east of the Norfolk Southern Railroad - Warwick Branch train tracks, located in the Town of Chester, Orange County, New York. The site is proximate to the Interstate Waste Facility and 4000 feet south of the Village of Chester southern boundary line. The mining operation proposes to mine a portion of Durland Hill and return the area to a state suitable for future commercial development.

A Mining Permit Application has been filed with the New York State Department of Environmental Conservation, (NYS DEC), Mine ID number 30658. In this application the applicant requests to mine shale from approximately 37 acres of a 47 acre site. Five acres of the parcel were previously mined and the land has been successfully reclaimed.

This study describes how the proposed mining operation will affect the operational characteristics of two nearby intersections listed below as identified by the NYS DEC in their response to the request for a mining permit;

- CR 13 (Kings Highway) and NYS Route 17M
- CR 13 (Kings Highway) and Black Meadow Road / Laroe Road (CR 45).

This study provides a description of the traffic network's current operating conditions based on the existing traffic volumes traveling through these intersections, herein referred to as the Existing Conditions. Future transportation operations are examined for the No Build Conditions (without operation of the proposed mine) and Build Conditions (including operation of the proposed mine). The future conditions (No Build and Build) analyze traffic operations in 2015 which represents full use of the mine and the potential horizon for the development of some or all of the proposed residential developments pending in the Chester vicinity. The No Build Condition is the future baseline upon which project traffic is based. The Build Condition represents the combination of the No Build Condition plus the traffic that would result from development and operation of the Chester Hill mining operation.

2.0 TRANSPORTATION NETWORK

2.1 Regional Road Network

As described previously, the project consists of a proposed mining operation located off Black Meadow Road in the Town of Chester, Orange County, New York. The applicant proposes to mine a 37 acre portion of Durland Hill and return the area to a state suitable for future commercial development. The mining operation is expected to be functioning at full capacity by 2015. The project site location is shown in Appendix A, Figure 1.

A portion of NYS Route 17, known as the Quickway, passes to the northeast of the site. NYS Route 17 is generally an east-west road, however in this area it curves north-south. NYS Route 17 is a four-lane divided limited access highway which is in the process of being upgraded to federal interstate standards in preparation of being redesignated I-86.

NYS Route 17 originates at the I-87 New York State Thruway interchange in Harriman, New York, and continues in a northwest direction to Corning, New York, where it connects with the existing I-86 that provides access to western New York State. Access to NYS Route 17 is located approximately one mile from the project site, via NYS Route 94 at Exit 126. Additional access is available at Exit 127, access from westbound NYS Route 17 is via Lehigh Avenue, and eastbound access is provided via NYS Route 17M.

NYS Route 17M (Brookside Avenue) is classified by New York State Department of Transportation (NYS DOT) as a rural major collector with one 12-foot wide travel lane in each direction and with 8-foot shoulders. NYS Route 17M parallels NYS Route 17 in the vicinity of the site.

2.2 Local Setting

Figure 1 illustrates the transportation network in the project vicinity.

The streets nearest the site include the following:

Black Meadow Road
 Kings Highway (County Road 13)
 Laroe Road (County Road 45)
 Lehigh Avenue
 Leone Lane

Black Meadow Road

Black Meadow Road is a two way Town road. In the project vicinity, it intersects with Leone Lane and continues south providing access to industrial and warehouse uses, and further south, residential and rural areas. The speed limit on Black Meadow Road varies from 40 miles per hour near the project site to 55 miles per hour south of the project site. The project proposes an access connection to Black Meadow Road.

County Road 13 (Kings Highway)

County Road 13, also known as Kings Highway, is a main thoroughfare in the project vicinity and connects NYS Route 17M in the Village of Chester to the Village of Warwick. The speed limit on King's Highway is 40 miles per hour.

County Road 45 (Laroe Road)

Laroe Road is a two way Orange County road with a 40 mile per hour speed limit. Laroe Road connects Lakes Road (CR 5) to CR 13. Its intersection with Leone Lane and CR 13 is signalized.

Lehigh Avenue

Lehigh Avenue is a two way Town road with a 40 mile per hour speed limit. Lehigh Avenue parallels NYS Route 17 and ends at a signalized intersection with NYS Route 17M. The Lehigh Avenue and NYS Route 17M signal is coordinated with the NYS Route 17M and CR 13 signal to its west. Lehigh Avenue leads to the Exit 127 northbound ramps of NYS Route 17.

Leone Lane

Leone Lane is a two way Village road with a 30 mile per hour speed limit. Leone Lane intersects with CR 13 (Kings Highway) at CR 45 (Laroe Road). The western end of Leone Lane is a dead end.

This study investigates the following intersections:

- 1. CR 13 (Kings Highway), and NYS Route 17M {signalized}
- 2. CR 13 (Kings Highway), Leone Lane, and CR 45 (Laroe Road) {signalized}

3.0 EXISTING CONDITIONS

3.1 Existing Peak Hour Volumes

Appendix A, Figures 2 and 3 show existing peak hour turning movement volumes at the intersections studied. Hourly volume data were obtained on Wednesday, March 28, 2012.

The weekday peak hours of traffic were determined based on the manual counts are as follows;

- Kings Highway and NYS Route 17M, 7:30 a.m. to 8:30 a.m. and 4:45 p.m. to 5:45 p.m.
- Kings Highway and Leone Lane/Laroe Road, 7:30 a.m. to 8:30 a.m. and 4:30 to 5:30 p.m.

Traffic analyses for these intersections are based on traffic flow rates that are represented by the highest fifteen minute volumes in the peak hours.

3.2 Level of Service Criteria

The <u>Highway Capacity Manual</u> (Transportation Research Board, 2000) and the Highway Capacity Software procedures document the methodology used for modeling levels of service, delay, and volume to capacity ratios at both signalized and unsignalized intersections. Level of service is a measure of the operational quality of an intersection; level of service A is the highest, most efficient level, and level of service F is the lowest level. The operational quality of an intersection is based on the average amount of time a vehicle is delayed. The New York State Department of Transportation generally seeks a minimum level of service D (delay of 55 seconds or less) for all lane groups.

3.3 Existing Levels of Service

The intersections studied were evaluated for existing levels of service. The results of the level of service analyses for these intersections are summarized in Table 1. Capacity analysis calculations for Existing, No-Build, and Build conditions are provided as Appendix C of this report.

Table 1 indicates that under existing conditions, all of the lane groups at the intersections studied operate at levels of service A to D during both the a.m. peak hour and p.m. peak hour periods, with the majority of the movements operating at the most efficient levels of service A and B.

Traffic Analysis April 27, 2012

		Tab	le 1									
	Existing Co	naition Lev	el of Servi	ce Sumn	nary							
Intersection Road	Lane Group Approach Direction - Movement	A.M. We Volume to Capacity Ratio	ekday Peak Delay (seconds/ vehicle)	Level of Service	P.M. Wee Volume to Capacity Ratio	Delay (seconds /vehicle)	Hour Level of Service					
Kings Highway (CR 13) and Laroe Road (CR 45) / Leone Lane												
Leone Lane	EB - L	0.36	17.5	В	0.42	14.7	В					
Laroe Road (CR 45)	WB - L	0.01	22.4	С	0.01	18.4	В					
	WB - T, R	0.61	15.7	В	0.26	12.4	В					
Kings Highway (CR 13)	NB - L	0.03	10.8	В	0.04	13.7	В					
	NB - T, R	0.55	11.1	В	0.32	9.7	А					
Kings Highway (CR 13)	SB - L	0.26	16.4	В	0.34	13.5	В					
	SB - T	0.27	9.4	А	0.48	10.7	В					
	SB - R	0.12	8.7	А	0.07	8.5	А					
	Overall		12.8	В		11.6	В					
Kings Highway (CR 13)	and NYS Route 17	N										
NYS Route 17M	EB - T	0.76	36.5	D	0.74	36.4	D					
	EB - R	0.21	31.1	С	0.65	35.4	D					
NYS Route 17M	WB - L	0.24	12.6	В	0.93	28.3	С					
	WB - T	0.26	5.7	А	0.52	6.2	А					
Kings Highway (CR 13)	NB - L	0.76	27.9	С	0.67	24.4	С					
	NB - R	0.28	7.9	А	0.12	6.9	А					
	Overall		21.5	С		22.9	С					
Level of Service (see App	pendix B for level of	service criteri	a).									
NB = Northbound, SB = S	Southbound, EB = Ea	astbound, WE	B = Westbou	ınd.								
L = left, R= right, T = thro	ough, (e.g. WB-L = W	estbound lef	t).									

4.0 FUTURE NO-BUILD TRAFFIC CONDITIONS

4.1 No-Build Traffic: Network and Volumes

Typically, a project's traffic impact is assessed by comparing future traffic conditions without the project's traffic (the 2015 No-Build condition) to traffic conditions with project-generated traffic (the 2015 Build condition).

No-Build traffic conditions are ascertained based on a number of factors: (1) improvements in the local road network that are planned or underway; (2) traffic from general population growth in the local area and, (3) traffic from identified development projects in the project vicinity.

The New York State Department of Transportation (NYS DOT) is improving the Quickway to interstate standards. Exit 126 of the Quickway was recently reconstructed and improved by realigning NYS Route 94 to reconfigure this road and the NYS Route 17 ramps into a standard diamond interchange configuration. Exit 127 is also expected to be improved as noted in the State Transportation Improvement Program and Town of Chester Comprehensive Plan. The Town Comprehensive Plan recommends that the CR 13 and NYS Route 17M intersection alignment also be improved as part of the Exit 127 improvements. Based upon funding constraints of the NYSDOT, the timing of the recommended improvements to the Route 17 interchanges is not certain. Thus, these improvements were not factored into the No-Build or Build traffic analysis.

The Town and Village of Chester were contacted to obtain a list of proposed development projects within the project vicinity. Table 2 lists the major pending projects in the study area. Traffic generated by these projects was included in the No-Build traffic analysis.

	Table 2 Pending or Approved Projects in Site	Vicinity
Project Name	Access Location	Project Description
BT Holdings	NYS Route 17M	336 Multifamily Units 100 Senior Citizen Rental Apts
Chester Golf Club	Gibson Hill, Bull Mill, Dug and Laroe Rd.	227 Single Family Homes
The Greens at Chester	NYS Route 94 and Conklingtown Road	Phase 1-237 Single Family Homes Total - 431 Single Family Homes
Camp Laguardia (MontCo)	NYS Route 17M	800 Multifamily Units 80,000 sf Light Industrial/Commercial
Bellevale	Lakes Road, Camp Monroe	164 Single Family Homes
Henry Farm	Lakes Road,	66 Single Family Homes 50 Senior Citizen Multifamily units
Ridgeview Estates	County Rd 45/Laroe Road and Pond Road	14 Single Family Homes
Hills at Chester	Whispering Hills Drive and NYS Route 94	24 Single Family Homes
Meadow Hill Senior Complex	NYS Route 94 Opposite Vista Drive	142 Senior Multifamily Units
Medical World Distribution	NYS Route 94 and Tetz Road	12,000 square feet Warehouse
Fresenius Distribution	NYS Route 94 and Tetz Road	194,400 square feet Warehouse
Source: Town and Village of C	hester, 2012.	

Traffic Analysis April 27, 2012

Peak hour traffic volumes for the a.m. and p.m. No-Build conditions are provided in Appendix A, Figures 3 and 4. These volumes are the sum of the traffic from the pending area projects and background traffic growth of two percent annually for three years added to existing traffic. The three year time period reflects time for the Mining Permit approval process and construction of the proposed Chester Hill mining operation. It is expected that the proposed mining operation will be fully functional by 2015.

4.2 No-Build Level of Service

Table 4 summarizes the levels of service for the 2015 No-Build condition. There are several changes to the anticipated levels of service due to general background growth and the potential for development in this region. However, all movements continue to operate at level of service "D" or better.

Any improvements in the state right of way including but not limited to signal timing changes, addition of a lane, or signalization, would require approval from the New York State Department of Transportation.

	No-Build Co	Tab ndition Lev	le 3 /el of Serv	ice Sumi	nary		
	Lane Group	A.M. We	ekday Peak	Hour	P.M. Wee	ekday Peak	Hour
Intersection Road	Approach Direction - Movement	Volume to Capacity Ratio	Delay (seconds/ vehicle)	Level of Service	Volume to Capacity Ratio	Delay (seconds /vehicle)	Level of Service
Kings Highway (CR 13)	and Laroe Road (C	R 45) / Leon	e Lane				
Leone Lane	EB - L	0.57	20.0	C*	0.55	16.2	В
Laroe Road (CR 45)	WB - L	0.07	27.2	С	0.03	21.2	C*
	WB - T, R	0.78	21.7	C*	0.36	13.0	В
Kings Highway (CR 13)	NB - L	0.07	11.2	В	0.11	14.7	В
	NB - T, R	0.59	11.4	В	0.35	9.8	А
Kings Highway (CR 13)	SB - L	0.36	18.1	В	0.46	15.1	В
	SB - T	0.29	9.5	А	0.52	10.9	В
	SB - R	0.18	9.0	А	0.07	8.5	А
	Overall		15.2	В		12.5	В
Kings Highway (CR 13)	and NYS Route 17	Μ					
NYS Route 17M	EB - T	0.90	39.6	D	0.89	42.9	D
	EB - R	0.29	31.3	С	0.76	40.2	D
NYS Route 17M	WB - L	0.35	13.2	В	0.95	44.4	D*
	WB - T	0.29	5.3	А	0.53	3.9	А
Kings Highway (CR 13)	NB - L	0.83	33.5	С	0.80	35.7	D*
	NB - R	0.34	8.9	А	0.15	7.4	А
	Overall		24.3	С		30.2	С
Level of Service (see Ap	pendix B for level of s	service criteri	ia).				
NB = Northbound, SB = S	Southbound, EB = Ea	astbound, WI	3 = Westbou	ınd.			
L = left, R= right, T = thro	ough, (e.g. WB-L = W	estbound lef	t).				
* Denotes change in Lev	el of Service compar	ed to Existing	g Conditions				
~	•						

5.0 FUTURE BUILD TRAFFIC CONDITIONS

5.1 Build Traffic: Network and Volumes

Site Improvements

The proposed mining operation of Chester Hill, LLC will be located off Black Meadow Road, in the Town of Chester, Orange County, New York. The site is located just east of the Norfolk Southern Railroad - Warwick Branch train tracks; proximate to the Interstate Waste Facility and 4000 feet south of the Village of Chester southern boundary line. The mining operation proposes to mine a portion of Durland Hill and return the area to a state suitable for future commercial development. Appendix A, Figure 6 illustrates the proposed site plan layout for the Chester Hill Mining Operation.

A Mining Permit Application has been filed with the New York State Department of Environmental Conservation, (NYS DEC), Mine ID number 30658. In this application the applicant requests to mine shale from approximately 37 acres of a 47 acre site. Five acres of the parcel were previously mined and the land has been successfully reclaimed.

Project Trip Generation and Distribution

This study describes how the proposed mining operation will affect the operational characteristics of two nearby intersections listed below as identified by the NYS DEC in their response to the request for a mining permit;

- CR 13 (Kings Highway) and NYS Route 17M, and
- CR 13 (Kings Highway) and Black Meadow Road / Laroe Road (CR 45).

The mining Permit filed with the NYSDEC estimates the total quantity of rock to be mined will be 2.5 million tons at an annual production rate of approximately 150,000 to 200,000 tons annually for a duration of up to 15 years. The rock will be processed on site. The processing plant has the capacity to process 250 tons per hour. In order to estimate potential trip generation, the processing of 250 tons was converted to approximately 192 cubic yards. Transport of this material in 16 cubic yard tri-axel trucks could require up to 12 trucks entering and exiting the site during the peak hour. In addition the applicant estimates there will be 4 to 6 employees on site during the mining operation. Table 4 provides a summary of the anticipated trip generation during full mining operation.

	Table 4 Project Trip Generation Summary													
	Trips Generated													
		A.M.	Peak H	our	P.M. Peak Hour									
	Land Use	IN (Trips)	OUT (Trips)	Total Trips	IN (Trips)	OUT (Trips)	Total Trips							
1	Mining Operation	12	12	24	12	12	24							
2	Employees	6	0	6	0	6	6							
	Total Trips	18	12	30	12	18	30							

Traffic Distribution

Appendix A, Figure 5 shows the anticipated traffic distribution. The trip distribution is based on existing patterns, in combination with land uses and anticipated routings. Traffic patterns in the project area are influenced by the local destinations and also by the locations of access points to NYS Route 17. Due to the wide roads, flat grades, and generous turning radii within the Chester Industrial Park, in combination with direct access to NYS Route 17 via Nucifora Boulevard to NYS Route 94, it is anticipated that up to 40 percent of the truck traffic origination from the mine may travel through the Chester Industrial Park to access NYS Route 17, thus 60 percent of truck traffic was distributed to the study intersections. This distribution is reflected on Appendix A, Figure 5. It should be noted that a 20 percent shift in distribution would represent the shift of only 6 vehicles.

Appendix A, Figures 7 and 8 show the site generated traffic associated with the proposed mining operation. Build traffic Appendix A, Figures 9 and 10 show the site generated trips (Appendix A, Figures 7 and 8) added to the No-Build volumes (Appendix A, Figures 3 and 4).

5.2 Build Level of Service

The Chester Hill mining operation is projected to generate up to a maximum of 30 trips in the a.m. peak, and a maximum of 30 trips in the p.m. peak hour. The intersections studied were analyzed for the Build condition (future condition with the combined project sites). The levels of service are summarized in Table 5.

There are no changes to the operating level of service at any of the movements in the intersections studied as a result of the proposed Chester Hill mining operation. All movements will continue to operate at level of service "D" or better.

	Build Cond	Tab dition Leve	le 5 I of Servic	e Summa	ary		
	Lane Group	A.M. We	ekday Peak	Hour	P.M. Wee	kday Peak	Hour
Intersection Road	Approach Direction - Movement	Volume to Capacity Ratio	Delay (seconds/ vehicle)	Level of Service	Volume to Capacity Ratio	Delay (seconds /vehicle)	Level of Service
Kings Highway (CR 13)							
Leone Lane	EB - L	0.61	21.7	С	0.58	17.0	В
Laroe Road (CR 45)	WB - L	0.08	27.6	С	0.03	22.0	С
	WB - T, R	0.77	21.9	С	0.37	13.0	В
Kings Highway (CR 13)	NB - L	0.07	11.3	В	0.12	14.7	В
	NB - T, R	0.59	11.4	В	0.35	9.8	А
Kings Highway (CR 13)	SB - L	0.36	18.1	В	0.46	15.1	В
	SB - T	0.29	9.5	А	0.52	10.9	В
	SB - R	0.14	8.8	А	0.08	8.5	А
	Overall		15.5	В		12.7	В
Kings Highway (CR 13)	and NYS Route 17	N					
NYS Route 17M	EB - T	0.90	39.6	D	0.89	43.0	D
	EB - R	0.30	31.4	С	0.77	40.3	D
NYS Route 17M	WB - L	0.36	13.3	В	0.95	44.6	D
	WB - T	0.29	5.3	А	0.54	3.9	А
Kings Highway (CR 13)	NB - L	0.83	33.7	С	0.81	36.1	D
	NB - R	0.35	8.9	А	0.15	7.4	А
	Overall		24.3	С		30.3	С
Level of Service (see App	pendix B for level of s	service criteri	ia).				
NB = Northbound, SB = S	Southbound, EB = Ea	astbound, WE	B = Westbou	ınd.			
L = left, R= right, T = thro	ough, (e.g. WB-L = W	estbound lef	t).				

* Denotes change in Level of Service compared to Existing Conditions

6.0 Summary

The Chester Hill mining operation is expected to generate up to 30 vehicular trips in the a.m. peak hour and up to 30 trips in the p.m. peak hour (combined truck traffic and employee vehicle trips). Trip generation is based on the estimated maximum volume of shale to be removed on a daily basis as stipulated in the Mining Permit Application, in combination with the anticipated employee trips.

Peak hour delays were calculated to establish the quality of operation (level of service) of the intersections studied under the existing condition, future condition without the combined project and the future condition with the combined project. Level of service is graded on a scale of A (best) to F (worst). Results are described below.

Under existing conditions, all of the studied lane groups at the intersections studied operate at levels of service A to D during both the a.m. peak hour and p.m. peak hour periods, with the majority of the movements operating at the most efficient levels of service A and B.

There are several changes to the anticipated levels of service due to general background growth and the potential for development in this region. However, all movements continue to operate at level of service "D" or better. Level of service "D" is considered acceptable by the NYS DOT.

There are no changes to the operating level of service at any of the movements in the intersections studied as a result of the proposed Chester Hill mining operation. All movements will continue to operate at level of service "D" or better. The overall level of service at the intersection of Kings Highway (CR13) and Leone Lane is level of service "B" with an average delay of less than 16 seconds. The overall level of service at the intersection of Kings Highway (CR13) and NYS Route 17M is level of service "C" with an average delay of less than 31 seconds.

The proposed Chester Hill mining will not result in a negative traffic impact on local roadway operations.

APPENDIX A

Traffic Volume Figures

File 12020 04/23/12 JS:\12020

MAP ENTITLED SURVEY FOR INTERSTATE WASTE

Figure 6: Site Plan **Chester Hill** Village of Chester, Orange County, New York Source: William D. Youngblood, Land Surveying, P.C., 08/24/11 Scale: 1" = 200'

APPENDIX B

Performance Measures Level of Service Criteria

Traffic: Performance Measures

Introduction

The <u>Highway Capacity Manual</u>¹ and the *Highway Capacity Software*² procedures document the methodology used for modeling levels of service, average vehicle delay, and volume -to-capacity ratios at both signalized and unsignalized intersections. Level of service is a measure of the operational quality of an intersection; level of service A is the highest, most efficient level, and level of service F is the lowest level. The operational quality of an intersection for the automobile mode is based on the average amount of time a vehicle is delayed. Levels of service are examined by 'lane group', the set of lanes allowing common movement(s) on an approach. Approaches to intersections are assigned primary directions for clarity as depicted on the traffic volume figures.

The *Highway Capacity Software* modeled results are applied to peak hour periods only. During off peak periods, which is the majority of the time, drivers typically will find operations better than the modeled peak hour results. During peak periods the experience of individual drivers can vary, because the model calculates average delay.

Level of Service Criteria Signalized Intersections

When analyzing activity at signalized intersections, an understanding of the definition of level of service for the Automobile mode is essential:

Automobile Mode

Level of service can be characterized for the entire intersection, each intersection approach, and each lane group. Control delay alone is used to characterize level of service for the entire intersection or an approach. Control delay and volume-to-capacity ratio are used to characterize level of service for a lane group. Delay quantifies the increase in travel time due to traffic signal control. It is also a surrogate measure to driver discomfort and fuel consumption. The volume-to-capacity ratio quantifies the degree to which a phase's capacity is utilized by a lane group. The following paragraphs describe each level of service.

Level of service A describes operations with a control delay of 10 seconds per vehicle or less and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is low and either progression is exceptionally favorable or the cycle length is very short. If it is due to favorable progression, most vehicles arrive during the green indication and travel through the intersection without stopping.

Level of service B describes operations with control delay between 10 and 20 seconds per vehicle and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is low and either progression is highly favorable or the cycle length is short. More vehicles stop than with Level of service A.

Level of service C describes operations with control delay between 20 and 35 seconds per vehicle and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when progression is favorable or the cycle length is moderate. Individual cycle failures (i.e., one or more queued vehicles are not able to depart as a result of depart as a result of insufficient capacity during the cycle) may begin to appear at this level. The number of

¹ Transportation Research Board of the National Academies, <u>Highway Capacity Manual</u>, Washington D.C. , 2010.

² Highway Capacity Software, Computer software, Version 6.1, Mctrans, Gainsville, Florida, 2011.

vehicles stopping is significant, although many vehicles still pass through the intersection without stopping.

Level of service D describes operations with control delay between 35 and 55 seconds per vehicle and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is higher and either progression is ineffective or the cycle length is long. Many vehicles stop and individual cycle failures are noticeable.

Level of service E describes operations with control delay between 55 and 80 seconds per vehicle and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is high, progression is unfavorable, and the cycle length is long. Individual cycle failures are frequent.

Level of service F describes operations with control delay exceeding 80 seconds per vehicle or a volume-to-capacity ratio greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is very high, progression is very poor, and the cycle length is long. Most cycles fail to clear the queue.

A lane group can incur a delay less than 80 seconds per vehicle when the volume-to-capacity ratio exceeds 1.0. This condition typically occurs when the cycle length is short, the signal progression is favorable, or both. As a result, both the delay and volume-to-capacity ratio are considered when lane group level of service is established. A ratio of 1.0 or more indicates that cycle capacity is fully utilized and represents failure from a capacity perspective (just as delay in excess of 80 seconds per vehicle represents failure from a delay perspective).

Signalized Intersections Level of Service Criteria Automobile Mode For Lane Groups												
Average Control Delay (Seconds Per Vehicle)	Volume-to-capacity Ratio less than or equal to one	Volume-to-capacity Ratio greater than one										
	Level of Service	Level of Service										
less than or equal to 10	А	F										
greater than 10 and less than or equal to 20	В	F										
greater than 20 and less than or equal to 35	С	F										
greater than 35 and less than or equal to 55	D	F										
greater than 55 and less than or equal to 80	E	F										
greater than 80	F	F										
¹ From Transportation Research Board of the National Academies, <u>Highway Capacity Manual</u> , Washington D.C., Volume 3 page 18-6, Exhibit 18-4, 2010. Abbreviations and mathematical symbols have been replaced for reader clarity. Table limited to lane groups (lane or group of lanes sharing a common movement)												

The Table below lists the level of service thresholds established for the automobile mode at a signalized intersection.³

The New York State Department of Transportation (NYS DOT) generally seeks in urban areas for a level of service D or better (delay of 55 seconds or less for a signalized intersection) for all lane groups however:

³ From Transportation Research Board of the National Academies, <u>Highway Capacity Manual</u>, Washington D.C., Volume 3 page 18-6, 2010. Abbreviations and mathematical symbols have been replaced for reader clarity.

In some cases, it may be necessary to accept level of service E or F on individual lane groups due to unreasonable costs or impacts associated with improving the level of service.⁴

⁴ From NYS DOT, <u>Highway Design Manual</u>, Revision 62, April 13, 2011, (page 5-103) with abbreviations replaced for reader clarity.

APPENDIX C

Level of Service Analysis

General Inform	nation							I	ntersec	tion Inf	ormatic	on	- 6	4 7 4 1	5 L		
Agency		TMA				1			Duration	, h	1.00						
Analyst		AAC		Analys	is Date	Apr 18	8, 2012	3, 2012 Area Typ			Other				← 👫		
Jurisdiction		Town of Chester		Time Period AM Peak Hour					PHF		0.87			w‡€ B	· ·		
Intersection		Kings Highway (CR	13)	Analys	is Year	Existi	ng	A	Analysis	Period	1> 7:0	00	* ~		*		
File Name		01 Route 17M and	Kings H	ighway	ghway Three Way EXAM.xus												
Project Descrip	tion					N 4 M 4 M F 7											
							I						1	0.0			
Demand Inform	nation				EB	1 -		WB			NB			SB			
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L.	Т	R		
Demand (v), ve	h/h				242	237	94	200		471		234					
Signal Informa	tion			1		1											
	95.0	Reference Phase	2		1 8	ŧL ĝ							7				
Offset s	0	Reference Point	End				<u> </u>								4		
Uncoordinated	Vos	Simult Con E/M	Off	Green	20.0	20.0	40.0	0.0	0.0	0.0	_	_					
Earco Modo	Fixed	Simult Cap N/S	Off	Ped	4.0	4.0	4.0	0.0	0.0	0.0	_	`⊢ ─	₹.		Y		
Force Mode	Fixed	Simult. Gap N/S	Oli	Reu	1.0	1.0	1.0	0.0	0.0	0.0		5					
Timer Results				FBI		FBT	WB	1	WBT	NB		NBT	SBI		SBT		
Assigned Phase	<u></u>		_	1	-	6	5	-	2	8	-	8	7		001		
Case Number	5			0.0		3.0	1.0		4.0	9.0		9.0	0.0				
Phase Duration	s			0.0		25.0	25 (<u>, </u>	50.0	45.0		45 0	0.0				
Change Period	(Y+R)	s		5.0		50	5.0	50 50		5.0	5.0 5.0		5.0				
Max Allow Hear	dway (A	/, 3 ΛΔΗ) e		0.0		3.0	3.1		3.0	3.1		3.1	0.0	_			
Queue Clearan	ce Time	(a) s		0.0		16.2	4.0 5.1		5.0	42 (42.0	0.0				
Green Extensio	n Timo	= (gs), s		0.0		0.6	4.0		0.4	42.0	, .	42.0	0.0				
Phase Call Pro	hability	(ge), 3		0.0		1.00	1.00		1.00	1.00		1.00	0.0	_			
Max Out Proba	bility					0.00	0.00	, ,	0.00	1.00		1.00	-				
Max Out 100al	onity					0.00	0.00	,	0.00	1.00	,	1.00		and an			
Movement Gro	oup Res	sults		EB		_		WB		NB				SB			
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R		
Assigned Move	ment			1	6	16	5	2	12	3	8	18	7	4	14		
Adjusted Flow F	Rate (v)	, veh/h		0	278	66	108	230	0	541	0	269	0				
Adjusted Satura	ation Flo	ow Rate <i>(s)</i> , veh/h/ln		0	1743	1477	1757	1845	0	1691	0	1505	0				
Queue Service	time (g	s), S		0.0	14.2	3.5	2.0	3.1	0.0	25.9	40.0	7.6	0.0				
Cycle Queue C	learanc	e Time <i>(g₀</i>), s		0.0	14.2	3.5	2.0	3.1	0.0	25.9	40.0	7.6	0.0				
Capacity (c), ve	h/h				367	311	446	874		712	0	950					
Volume-to-Capa	acity Ra	atio <i>(X)</i>		0.000	0.758	0.211	0.242	0.263	0.000	0.760	0.000	0.283	0.000				
Available Capa	city (Ca)	, veh/h			734	622	815	874		712	0	950					
Back of Queue	(Q), vel	h/ln			5.9	1.2	1.0	1.0		10.4		2.1					
Overflow Queue	e (Q3), v	/eh/ln			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
Queue Storage	Ratio (RQ)		0.0	0.5	0.2	0.3	0.0	0.0	0.4	0.0	0.8	0.0				
Uniform Delay (d_1) , s/veh					35.2	31.0	12.5	5.6	1	23.4	0.0	7.9					
Incremental Delay (d2), s/veh				0.0	1.2	0.1	0.1	0.1	0.0	4.4	0.0	0.1	0.0				
Initial Queue Delay (d3), s/veh					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
Control Delay (Control Delay (d), s/veh					31.1	12.6	5.7		27.9	0.0	7.9					
Level of Service	e (LOS)				D	С	В	Α		С		Α					
Approach Delay	, s/veh	/LOS		35.4		D	7.9		A	21.2	2	С	0.0				
Intersection Del	lav s/ve	h / LOS				2'	1.5			С							

General Inform	nation								ntersec	tion Inf	ormatio	on	- 6	4	2 6	
Agency		TMA							Duration	h	1.00					
Analyst		AAC		Analys	is Date	Apr 18	3, 2012	A	Area Typ	e	Other				← 👫	
Jurisdiction		Town of Chester		Time F	Period	PM Pe	eak Hou	ır F	PHF	0.85				W ‡ E S	<u>۲</u>	
Intersection		Kings Highway (CR	13)	Analys	is Year	Existir	ng	A	Analysis	Period	1> 7:(00	*		*	
File Name		01 Route 17M and	Kings H	lighway	Three \	Nay EX	PM.xus							ጎሶ		
Project Descript	Project Description															
							_			1						
Demand Inform	nation				EB			WB			NB		<u> </u>	SB		
Approach Movement					Т	R		Т	R	<u> </u>	Т	R	L	Т	R	
Demand (v), ve	h/h				242	361	363	391		422		99				
Signal Informa	tion			1	1	1										
	05.6	Poforonco Phaso	2		ΙĘ	ŧL ĝ							<u> </u>			
Offect o	95.0	Reference Priase	End			F	1	71				1	2	3	4	
Unseerdingtod	Vac		Off	Green	20.6	20.0	40.0	0.0	0.0	0.0	_	_				
	Fixed	Simult. Gap E/W	011	Yellow	4.0	4.0	4.0	0.0	0.0	0.0		`⊷	₹.		Y	
Force Mode	Fixed	Simult. Gap N/S	Off	Red	1.0	1.0	1.0	0.0	0.0	0.0		5	Y 6	1		
Timor Posults				EBI		EBT	W/B		W/BT	NB		NRT	SBI		SBT	
Assigned Phase				1	-	6	5		2	8	-	8	7		001	
Caso Number	5			0.0		3.0	1.0		4.0	0		0	,			
Phase Number	6			0.0		3.0 25.0	25.6	2	4.0 50.6	9.0		9.0 45.0	0.0			
Change Deried	, 5			5.0		23.0 5.0	25.0	50 50		45.0	, ,	4J.0	5.0	\rightarrow		
Max Allow Hoa	(1 + 1 + c)	7, S // L/) c		5.0		2.1	3.0		3.0	2.1		2.1	0.0	_		
	uway (N	иап), s		0.0		J. I	3.1	>	3.0	3.1		3.1	0.0			
Queue Clearan		$(y_s), s$		0.0		15.6	19.0	>	10.2	42.0	, .	42.0	0.0			
Bhase Cell Brok	n nine	(<i>ye)</i> , s		0.0		0.9	1.00		0.0	1.00		1.00	0.0			
Phase Call Prot						1.00	1.00		0.00	1.00)	1.00				
Max Out Proba	onity					0.00	0.00	,	0.00	1.00)	1.00				
Movement Gro	up Res	sults		EB					WB		NB			SB		
Approach Move	ment			L 1	Т	R	L	Т	R	L	T	R	L	T	R	
Assigned Move	ment			1	6	16	5	2	12	3	8	18	7	4	14	
Adjusted Flow F	Rate (v)	. veh/h		0	285	213	427	460	0	496	0	116	0			
Adjusted Satura	ation Flo	, ow Rate <i>(s</i>), veh/h/ln		0	1845	1563	1774	1863	0	1774	0	1579	0			
Queue Service	time <i>(a</i> :	s). S		0.0	13.8	11.9	17.8	8.2	0.0	21.6	40.0	2.8	0.0			
Cycle Queue C	learanc	e Time (ac), s		0.0	13.8	11.9	17.8	8.2	0.0	21.6	40.0	2.8	0.0			
Capacity (c), ve	h/h	(0)/			386	327	458	889		742	0	1001				
Volume-to-Capa	acity Ra	atio (X)		0.000	0.738	0.651	0.933	0.518	0.000	0.669	0.000	0.116	0.000			
Available Capa	citv (Ca)	. veh/h			772	654	817	889		742	0	1001				
Back of Queue	(Q). vel	h/ln			6.1	4.4	5.9	2.2		8.7		0.8				
Overflow Queue	e (Q3). v	veh/ln			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
Queue Storage	Ratio (RQ)		0.0	0.5	1.0	*1.6*	0.1	0.0	0.3	0.0	0.3	0.0			
Uniform Delav (′d1), s/v	eh			35.4	34.6	22.0	6.0		22.5	0.0	6.9				
Incremental Del	Incremental Delay (d2), s/veh			0.0	1.1	0.8	6.3	0.2	0.0	1.9	0.0	0.0	0.0			
Initial Queue Delay (d2), s/veh					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
Control Delav (Control Delay (d), s/veh				36.4	35.4	28.3	6.2		24.4	0.0	6.9				
Level of Service	e (LOS)				D	D	С	Α		С		Α				
Approach Delay	/, s/veh	/LOS		36.0		D	16.8	3	В	21.1		С	0.0			
Intersection Del	ay s/ve	h / LOS				22	2.9			C						

													1				
General Inform	nation								ntersec	tion Inf	ormatio	on	- 6	4	5 L		
Agency		ТМА							Duration	, h	1.00						
Analyst		AAC		Analys	sis Date	Apr 18	3, 2012	A	Area Typ	e	Other				← 👫		
Jurisdiction		Town of Chester		Time Period AM Peak Hour P					PHF		0.87		1	w‡e 9	<u>۲</u>		
Intersection		Kings Highway (CR	13)	Analys	sis Year	No-Bu	uild	A	Analysis	Period	1> 7:0	00	*		*		
File Name		01 Route 17M and	≺ings ⊢	lighway	Three \	Nay NB	AM.xus							ጎሮ			
Project Descript	tion														24		
														0.0			
Demand Inform	nation			<u> </u>	EB		<u> </u>	WB		<u> </u>	NB		<u> </u>	SB			
Approach Move	ement			L		R	L		R	L		R		–	R		
Demand (v), ve	h/h				304	264	133	222		505		277					
Signal Informa	tion				1	1									_		
Cycle s	96.6	Reference Phase	2		5	=L É		_					7				
Offset s	0	Reference Point	End			Ľ.	<u> </u>								4		
Uncoordinated	Ves	Simult Gap E/W	Off	Green	20.0	21.6	40.0	0.0	0.0	0.0	_	_					
Eorce Mode	Fixed	Simult, Gap N/S	Off	Red	4.0	4.0	4.0	0.0	0.0	0.0	_ *	_ 	♥。		Y		
T OICE MODE	Tixeu	Sindit. Cap N/S	Oli	Tteu	1.0	1.0	1.0	0.0	0.0	0.0							
Timer Results				EBI		FBT	WB		WBT	NB		NBT	SBI		SBT		
Assigned Phase	.			1		6	5		2	8		8	7				
Case Number	-			0.0		3.0	1.0		4.0	9.0		9.0	0.0	+			
Phase Duration	s			0.0		26.6	25.0 51.6		45.0 45.0		45.0	0.0					
Change Period	$(Y+R_c)$	s		5.0		5.0	5.0 5.0		5.0	5.0 5.0		5.0					
Max Allow Heat	dway (A	(AH) s	_	0.0		3.0	3.1		3.0	3.2		3.2	0.0				
Queue Clearan	ce Time	(a_{s}) s		0.0		20.8	5.1	-	5.4	42 ()	42.0	0.0				
Green Extensio	n Time	(g_) s		0.0		0.8	0.3		0.4	0.0	,	0.0	0.0				
Phase Call Prot	nahility	(90), 0		0.0		1.00	1.00)	1.00	1.00)	1.00	0.0				
Max Out Proba	bility					0.00	0.00))	0.00	1.00	, ,	1.00					
	onity					0.00	0.00	, ,	0.00	1.00	,	1.00		a de la com			
Movement Gro	up Res	sults		EB			W		NB		NB			SB	SB		
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R		
Assigned Move	ment			1	6	16	5	2	12	3	8	18	7	4	14		
Adjusted Flow F	Rate <i>(v)</i>	, veh/h		0	349	97	153	255	0	580	0	318	0				
Adjusted Satura	ation Flo	ow Rate <i>(s)</i> , veh/h/ln		0	1743	1477	1757	1845	0	1691	0	1505	0				
Queue Service	time (g	s), s		0.0	18.8	5.2	3.1	3.4	0.0	29.6	40.0	9.8	0.0				
Cycle Queue C	learanc	e Time <i>(g₀</i>), s		0.0	18.8	5.2	3.1	3.4	0.0	29.6	40.0	9.8	0.0				
Capacity (c), ve	h/h				389	330	438	890		700	0	935					
Volume-to-Capa	acity Ra	atio <i>(X)</i>		0.000	0.897	0.293	0.349	0.287	0.000	0.829	0.000	0.341	0.000				
Available Capa	city (Ca)	, veh/h			722	612	802	890		700	0	935					
Back of Queue	(Q), vel	n/In			8.0	1.8	1.4	1.1		12.6		2.8					
Overflow Queue	e (Q3), ν	/eh/ln			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
Queue Storage	Ratio (RQ)		0.0	0.7	0.4	0.4	0.1	0.0	0.5	0.0	*1.1*	0.0				
Uniform Delay (′d1), s/v	eh			36.4	31.2	13.0	5.2		25.2	0.0	8.8					
Incremental Del	Incremental Delay (d2), s/veh			0.0	3.2	0.2	0.2	0.1	0.0	8.3	0.0	0.1	0.0				
Initial Queue Delay (d₃), s/veh					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
Control Delay (Control Delay (d), s/veh				39.6	31.3	13.2	5.3		33.5	0.0	8.9					
Level of Service	e (LOS)				D	С	В	А		С		Α					
Approach Delay	/, s/veh	/LOS		37.8	3	D	8.3		А	24.8	3	С	0.0				
Intersection Del	ay s/ve	h / LOS				24	1.3			С							

General Inform	nation								ntersec	tion Inf	ormatio	on	- É	4 7 4 1	5 L
Agency		ТМА							Duration	h	1.00				
Analyst		AAC		Analys	is Date	e Apr 18	3, 2012	A	Area Typ	e	Other				← 👫
Jurisdiction		Town of Chester		Time F	Period	PM P	eak Hou	ır F	PHF		0.85		<u> </u>	₩	<u>۲</u>
Intersection		Kings Highway (CR	13)	Analys	is Year	· No-Bi	uild	A	Analysis	Period	1> 7:0	00	*		*
File Name		01 Route 17M and	Kings ⊢	lighway	Three \	Way NE	PM.xus							ግሮ	
Project Descript	tion												h	4144	24
				_						1					
Demand Inform	nation			<u> </u>	EB		<u> </u>	WB		<u> </u>	NB		<u> </u>	SB	
Approach Move	ement			L		R	L		R	L		R	L L		R
Demand (v), ve	h/h				297	396	433	442		460		127	_		
Signal Informa	tion				1	1									_
Cycle s	105.0	Reference Phase	2		5	=L å		_							
Offset s	0	Reference Point	End			Ľ.	<u> </u>								4
Uncoordinated	Ves	Simult Gap E/W	Off	Green	27.6	22.4	40.0	0.0	0.0	0.0	_	_			
Eorce Mode	Fixed	Simult, Gap N/S	Off	Red	4.0	4.0	4.0	0.0	0.0	0.0	_ *	`┍→ ─	♥。		Y
T OICE MODE	TIXEU	Sindit. Cap N/S	Oli	Tteu	1.0	1.0	1.0	0.0	0.0	0.0					
Timer Results				EBI		FBT	WB		WBT	NB		NBT	SBI		SBT
Assigned Phase	.			1		6	5		2	8		8	7		
Case Number	Case Number					3.0	1.0		4.0	9.0		9.0	0.0		
Phase Duration, s				0.0		27.4	32.6	3	60.0	45 () .	45.0	0.0		
Change Period	$(Y+R_c)$	s		5.0		50	5.0		5.0			5.0	5.0		
Max Allow Heat	dway (A	(AH) s	_	0.0		3.1	3.1		3.0			3.1	0.0		
Queue Clearan	ce Time	(a_{s}) s		0.0		21.3	26.7	,	8.9	42 ()	42.0	0.0		
Green Extensio	n Time	(g_) s		0.0		1 1	0.9		0.9	0.0	,	0.0	0.0		
Phase Call Prot	nahility	(90), 0		0.0		1.00	1.00)	1.00	1.00)	1.00	0.0		
Max Out Proba	bility					0.00	0.00	,)	0.00	1.00	, ,	1.00			
	onity					0.00	0.00	,	0.00	1.00	,	1.00		a de la com	
Movement Gro	up Res	sults			EB			WB			NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			1	6	16	5	2	12	3	8	18	7	4	14
Adjusted Flow F	Rate <i>(v)</i>	, veh/h		0	349	254	509	520	0	541	0	149	0		
Adjusted Satura	ation Flo	ow Rate <i>(s)</i> , veh/h/ln		0	1845	1563	1774	1863	0	1774	0	1579	0		
Queue Service	time (g	s), s		0.0	19.3	16.0	24.7	6.9	0.0	28.6	40.0	3.9	0.0		
Cycle Queue C	learanc	e Time <i>(g₀</i>), s		0.0	19.3	16.0	24.7	6.9	0.0	28.6	40.0	3.9	0.0		
Capacity (c), ve	h/h				394	334	535	976		676	0	1016			
Volume-to-Capa	acity Ra	atio <i>(X)</i>		0.000	0.887	0.761	0.952	0.533	0.000	0.801	0.000	0.147	0.000		
Available Capa	city (Ca)	, veh/h			702	595	744	976		676	0	1016			
Back of Queue	(Q), vel	n/In			8.8	6.1	10.1	1.7		12.7		1.2			
Overflow Queue	e <i>(Q3)</i> , v	/eh/ln			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Queue Storage Ratio (<i>RQ</i>)				0.0	0.7	*1.0*	*2.3*	0.1	0.0	0.5	0.0	0.4	0.0		
Uniform Delay (<i>d</i> 1), s/veh					40.1	38.8	22.0	3.6		29.0	0.0	7.4			
Incremental Delay (d2), s/veh				0.0	2.8	1.4	22.4	0.3	0.0	6.7	0.0	0.0	0.0		
Initial Queue Delay (d3), s/veh					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Control Delay (d), s/veh					42.9	40.2	44.4	3.9		35.7	0.0	7.4			
Level of Service (LOS)					D	D	D	А		D		Α			
Approach Delay	Approach Delay, s/veh / LOS				;	D	23.9)	С	29.5	5	С	0.0		
Intersection Del	tersection Delay s/veh / LOS					30).2			C					

-																			
General Inform	nation								ntersec	tion Inf	ormatio	on	- 1	4					
Agency		ТМА							Duration	, h	1.00								
Analyst		AAC		Analys	is Date	Apr 18	3, 2012	/	Area Typ	e	Other				← <mark>*</mark>				
Jurisdiction		Town of Chester		Time F	Period	AM P	eak Hou	ır I	PHF		0.87			witt	<u>۲</u>				
Intersection		Kings Highway (CR	.13)	Analys	is Year	Build		/	Analysis	Period	1> 7:0	00	7		*				
File Name		01 Route 17M and	Kings H	ighway	Three	Way BA	M.xus							ጎሰ					
Project Descrip	tion												n.	4144	14				
				_			_			_									
Demand Inform	nation				EB	1 -		WE	3		NB			SB					
Approach Move	ement			L	Т	R	_ L	Т	R	_ L	Т	R	L	T	R				
Demand (v), ve	h/h		_		304	265	138	222	2	506		281							
Signal Informa	tion			1		1	1												
	96.6	Reference Phase	2		6	=L \$						•	7						
Offset s	0	Reference Point	End			F	1	2							4				
Uncoordinated	Vos	Simult Con E/M	Off	Green	20.0	21.6	40.0	0.0	0.0	0.0	_	_							
	Fixed	Simult Cap N/S	Off	Yellow	4.0	4.0	4.0	0.0	0.0	0.0		`⊷~	₹.		Y				
Force Mode	Fixed	Simult. Gap N/S	UII	Reu	1.0	1.0	1.0 0.		0.0	0.0		5		/					
Timer Results				EBI		FBT	W/B	1	WBT	NB		NBT	SBI		SBT				
Assigned Phase	۵		_	1	-	6	5	-	2	8	-	8	7		0.51				
Case Number	<u> </u>			0.0		3.0	1.0		4.0	9.0		9.0	,	-					
Phase Duration, s				0.0		26.6	25 (51.6	45 (45 0	0.0						
Change Period	Change Period (V+R) c					5.0	5.0		5.0	5.0		5.0	5.0						
Max Allow Hear	dway (A	,3 ΛΔΗ) ε		0.0		3.0	3.1		3.0		-	3.2	0.0						
	ce Time	(a) s		0.0		20.8	5.2		5.0	42 (42.0	0.0						
Green Extensio	n Timo	; (gs), s		0.0		0.8	0.2		0.4	42.0	, .	42.0	0.0						
Phase Call Pro	hability	(99), 3		0.0		1.00	1.00		1.00	1.00		1.00	0.0						
Max Out Proba	bility					0.00	0.00		0.00	1.00))	1.00							
	onity					0.00	0.00	,	0.00	1.00	,	1.00		a de la com					
Movement Gro	oup Res	sults			EB	_		WB	_		NB			SB					
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R				
Assigned Move	ment			1	6	16	5	2	12	3	8	18	7	4	14				
Adjusted Flow F	Rate <i>(v)</i>	, veh/h		0	349	98	159	255	0	582	0	323	0						
Adjusted Satura	ation Flo	w Rate (s), veh/h/ln		0	1743	1477	1757	1845	0	1691	0	1505	0						
Queue Service	time (g	s), s		0.0	18.8	5.3	3.2	3.4	0.0	29.7	40.0	10.0	0.0						
Cycle Queue C	learanc	e Time <i>(g₀</i>), s		0.0	18.8	5.3	3.2	3.4	0.0	29.7	40.0	10.0	0.0						
Capacity (c), ve	eh/h	,			389	330	438	890		700	0	935							
Volume-to-Cap	acity Ra	atio (X)		0.000	0.897	0.296	0.362	0.287	0.000	0.830	0.000	0.345	0.000						
Available Capa	city (Ca)	, veh/h			722	612	802	890		700	0	935							
Back of Queue	(Q), vel	h/ln			8.0	1.8	1.5	1.1		12.6		2.8							
Overflow Queu	e (Q3), v	/eh/ln			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0							
Queue Storage	Queue Storage Ratio (RQ)				0.7	0.4	0.5	0.1	0.0	0.5	0.0	*1.1*	0.0						
Uniform Delay (d1), s/veh					36.4	31.2	13.1	5.2	1	25.3	0.0	8.8							
Incremental Delay (<i>d</i> ₂), s/veh				0.0	3.2	0.2	0.2	0.1	0.0	8.4	0.0	0.1	0.0						
Initial Queue Delay (<i>d</i> ₃), s/veh					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0							
Control Delay (d), s/veh					39.6	31.4	13.3	5.3		33.7	0.0	8.9							
Level of Service (LOS)					D	С	В	Α		С		Α							
Approach Delay	Approach Delay, s/veh / LOS				;	D	8.4		A	24.8	3	С	0.0						
Intersection De	pproach Delay, s/veh / LOS tersection Delay s/veh / LOS					37.8 D 8.4							C						

7																		
General Inform	General Information							I	ntersec	tion Inf	ormatio	on	_ ř	4 7 4 1	8 L			
Agency		TMA							Duration	h	1.00				-			
Analyst		AAC		Analys	is Date	Apr 18	3, 2012	A	Area Typ	e	Other				▲ ▼ →			
Jurisdiction		Town of Chester		Time F	Period	PM Pe	eak Hou	ır F	PHF		0.85			W = E	· · ·			
Intersection		Kings Highway (CR	13)	Analys	is Year	Build		A	Analysis	Period	1> 7:(00	*		*			
File Name		01 Route 17M and	Kings ⊢	lighway	Three	Way BP	M.xus							ን የ				
Project Descript	tion	Î												414Y	2 4			
										Ω.								
Demand Inform	nation				EB			WB			NB			SB				
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R			
Demand (v), ve	h/h				297	398	434	444		462		132						
				Ú.		_		_										
Signal Informa	tion				∈	_ ←	_											
Cycle, s	105.2	Reference Phase	2		6	₽₹	<u> </u>	7					2		4			
Offset, s	0	Reference Point	End	Green	27.7	22.5	40.0	0.0	0.0	0.0								
Uncoordinated	Yes	Simult. Gap E/W	Off	Yellow	4.0	4.0	4.0	0.0	0.0	0.0		<u> </u>	_		\sim			
Force Mode	Fixed	Simult. Gap N/S	Off	Red	1.0	1.0	1.0	0.0	0.0	0.0		5	6	7				
							_			_			_					
Timer Results				EBL	-	EBT	WB	L	WBT	NB	-	NBT	SBL	-	SBT			
Assigned Phase	e			1		6	5		2	8		8	7					
Case Number				0.0		3.0	1.0		4.0	9.0		9.0	0.0					
Phase Duration	, S			0.0		27.5	32.7	/	60.2	45.0) .	45.0	0.0					
Change Period,	(Y+R₀)), s		5.0		5.0	5.0		5.0			5.0	5.0					
Max Allow Head	dway <i>(N</i>	<i>I</i> AH), s		0.0		3.1	3.1		3.0	3.1		3.1	0.0					
Queue Clearan	ce Time	e (gs), s				21.3	26.8	3	9.0	42.0) .	42.0						
Green Extensio	n Time	<i>(g_e),</i> s		0.0		1.1	0.9		1.0	0.0		0.0	0.0					
Phase Call Prot	bability					1.00	1.00)	1.00	1.00)	1.00						
Max Out Probal	bility					0.00	0.00)	0.00	1.00)	1.00						
				_			_						_					
Movement Gro	oup Res	sults			EB			WB			NB			SB				
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R			
Assigned Move	ment			1	6	16	5	2	12	3	8	18	7	4	14			
Adjusted Flow F	Rate (v)	, veh/h		0	349	256	511	522	0	544	0	155	0	<u> </u>				
Adjusted Satura	ation Flo	ow Rate <i>(s)</i> , veh/h/ln		0	1845	1563	1774	1863	0	1774	0	1579	0					
Queue Service	time (g	s), S		0.0	19.3	16.2	24.8	7.0	0.0	28.8	40.0	4.1	0.0					
Cycle Queue C	learanc	e Time <i>(gc)</i> , s		0.0	19.3	16.2	24.8	7.0	0.0	28.8	40.0	4.1	0.0					
Capacity (c), ve	h/h				394	334	536	977		675	0	1016		<u> </u>				
Volume-to-Capa	acity Ra	atio <i>(X)</i>		0.000	0.887	0.768	0.953	0.535	0.000	0.806	0.000	0.153	0.000					
Available Capa	city (ca)	, veh/h			702	595	743	977		675	0	1016						
Back of Queue	(Q), ve	h/ln			8.8	6.2	10.1	1.7		12.9		1.2						
Overflow Queue	e <i>(</i> Q₃), v	veh/ln			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
Queue Storage Ratio (RQ)				0.0	0.7	*1.0*	*2.3*	0.1	0.0	0.5	0.0	0.4	0.0					
Uniform Delay (d1), s/veh					40.1	38.9	22.0	3.6		29.1	0.0	7.4						
Incremental Delay (d₂), s/veh				0.0	2.8	1.4	22.6	0.3	0.0	7.0	0.0	0.0	0.0					
Initial Queue Delay <i>(d₃</i>), s/veh					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
Control Delay (d), s/veh					43.0	40.3	44.6	3.9		36.1	0.0	7.4						
Level of Service (LOS)					D	D	D	Α		D		А						
Approach Delay	Approach Delay, s/veh / LOS					D	24.0)	С	29.7	7	С	0.0					
Intersection Del	tersection Delay s/veh / LOS				30.3								С					

								1					1			
General Inform	nation							1	ntersec	tion Inf	ormatio	on	- É	.J.1.L.		
Agency		TMA				1			Duration	, h	1.00					
Analyst		AAC		Analys	sis Date	Apr 1	7, 2012	ŀ	Area Typ	e	Other		4		47.	
Jurisdiction		Town of Chester		Time F	Period	AM P	eak Hou	ır F	PHF		0.87		-++	W ‡ E S		
Intersection		Black Meadow Roa	d	Analys	sis Year	Existi	ng	ŀ	Analysis	Period	1> 7:0	00			*	
File Name		02 Black Meadow F	Road an	d Kings	Highwa	ay EXA	M.xus							11		
Project Descript	tion												h	1 1 1 1 1 1 1 1		
				_						_						
Demand Inform	nation				EB		<u> </u>	WB		<u> </u>	NB		<u> </u>	SB		
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R	
Demand (v), ve	h/h			62	7	18	2	30	259	15	389	1	84	179	69	
0:	41)	1 11:	1 6				1			_			
Signal Informa	tion		0		243	1.3 \$									\rightarrow	
Cycle, s	55.0	Reference Phase	2		L \$17	י≓ "						1	2		4	
Offset, s	0	Reference Point	End	Green	25.0	20.0	0.0	0.0	0.0	0.0						
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	4.0	4.0	0.0	0.0	0.0	0.0			**	_	4	
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	0.0	0.0	0.0	0.0	_	5	6	7	8	
														_		
Timer Results				EBL	-	EBI	WB	-	WBT	NB	-	NBT	SBI	-	SBI	
Assigned Phase	e			8		8	4	_	4	6		6	2	_	2	
Case Number				8.0		8.0	6.0		6.0	6.0		6.0	5.0		5.0	
Phase Duration, s				25.0		25.0	25.0)	25.0	30.0)	30.0	30.0)	30.0	
Change Period,	(Y+Rc)	, s		5.0		5.0	5.0		5.0	5.0		5.0	5.0		5.0	
Max Allow Head	dway (A	//AH), s		3.4		3.4	3.4		3.4	3.2		3.2	3.2		3.2	
Queue Clearan	ce Time	e (gs), s		16.6	6	16.6	16.7	7	16.7	11.9)	11.9	17.0)	17.0	
Green Extensio	n Time	<i>(g⊧),</i> s		0.4		0.4	0.4		0.4	1.7		1.7	1.6		1.6	
Phase Call Prot	oability			1.00)	1.00	1.00)	1.00	1.00)	1.00	1.00)	1.00	
Max Out Probal	bility			0.98	3	0.98	1.00)	1.00	0.00)	0.00	0.02	2	0.02	
	_			_			_			_			_			
Movement Gro	oup Res	sults			EB			WB			NB	_		SB		
Approach Move	ement			L	1	R	L		R	L		R	L		R	
Assigned Move	ment			3	8	18	7	4	14	1	6	16	5	2	12	
Adjusted Flow F	Rate (v)	, veh/h		100	0	0	2	0	332	17	0	448	97	206	79	
Adjusted Satura	ation Flo	ow Rate (s), veh/h/ln		455	0	0	1207	0	1501	1138	0	1809	854	1696	1495	
Queue Service	time (g	s), S		4.6	0.0	0.0	0.1	0.0	9.9	0.5	0.0	9.9	5.1	4.1	1.7	
Cycle Queue C	learanc	e Time <i>(g₀)</i> , s		14.6	0.0	0.0	14.7	0.0	9.9	4.7	0.0	9.9	15.0	4.1	1.7	
Capacity (c), ve	h/h			278			250		546	563		822	366	771	680	
Volume-to-Capa	acity Ra	atio <i>(X)</i>		0.360	0.000	0.000	0.009	0.000	0.609	0.031	0.000	0.545	0.264	0.267	0.117	
Available Capa	city (Ca)	, veh/h		278			250		546	666		987	443	925	816	
Back of Queue	(Q), vel	h/ln		1.3			0.0		2.9	0.1		3.0	0.9	1.2	0.4	
Overflow Queue	∋ <i>(Q₃)</i> , ν	veh/ln		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Queue Storage	Queue Storage Ratio (RQ)				0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.1	0.2	0.1	0.1	
Uniform Delay (d1), s/veh				17.2			22.4		14.3	10.8		10.9	16.3	9.3	8.6	
Incremental Delay (d₂), s/veh				0.3	0.0	0.0	0.0	0.0	1.4	0.0	0.0	0.2	0.1	0.1	0.0	
Initial Queue Delay <i>(d₃</i>), s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh				17.5			22.4		15.7	10.8		11.1	16.4	9.4	8.7	
Level of Service (LOS)				В			С		В	В		В	В	Α	Α	
Approach Delay	Approach Delay, s/veh / LOS				5	В	15.8	3	В	11.1		В	11.0)	В	
Intersection Del	tersection Delay s/veh / LOS					12	2.8			В						

General Inform	nation								Intersec	tion Inf	ormatio	on	_		6 L
Agency		TMA						1	Duration	, h	1.00			***	
Analyst		AAC		Analys	sis Date	Apr 1	7, 2012	/	Area Typ	e	Other		2		41. 11.
Jurisdiction		Town of Chester		Time F	Period	PM P	eak Hou	ır l	PHF		0.99		- +		→*
Intersection		Black Meadow Roa	d	Analys	sis Year	· Existii	ng	/	Analysis	Period	1> 7:0	00	-		*
File Name		02 Black Meadow F	Road an	d Kings	Highwa	ay EXPI	M.xus							5 10	
Project Descrip	tion													41999P	11
				_			11								
Demand Inform	nation				EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), ve	h/h			110	26	35	3	21	124	17	263	2	173	394	50
				ù.	1.112					11	_				
Signal Informa	tion				215	3 4									-€
Cycle, s	55.0	Reference Phase	2		L 517	۳Ř ۴						1	2		4
Offset, s	0	Reference Point	End	Green	25.0	20.0	0.0	0.0	0.0	0.0					
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	4.0	4.0	0.0	0.0	0.0	0.0			N		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	0.0	0.0	0.0	0.0		5	6	7	Y 8
				_	_		_			_			_		
Timer Results				EBI	-	EBT	WBL		WBT	NB	_	NBT	SBI		SBT
Assigned Phase	Э			8		8	4		4	6		6	2		2
Case Number	Case Number					8.0	6.0		6.0	6.0		6.0	5.0		5.0
Phase Duration, s				25.0)	25.0	25.0)	25.0	30.0)	30.0	30.0) :	30.0
Change Period,	, (Y+Rc)), s		5.0		5.0	5.0		5.0	5.0		5.0	5.0		5.0
Max Allow Head	dway (N	<i>ЛАН</i>), s		3.3		3.3	3.3		3.3	3.2		3.2	3.2		3.2
Queue Clearan	ce Time	e (gs), s		12.0)	12.0	12.1		12.1	11.1		11.1	13.9	•	13.9
Green Extensio	n Time	<i>(g⊧),</i> s		0.5		0.5	0.4		0.4	1.8		1.8	1.8		1.8
Phase Call Prol	bability			1.00)	1.00	1.00)	1.00	1.00)	1.00	1.00)	1.00
Max Out Probal	bility			0.03	3	0.03	0.03	3	0.03	0.00)	0.00	0.01	1 1	0.01
				EB						_			_		
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			3	8	18	7	4	14	1	6	16	5	2	12
Adjusted Flow F	Rate (v)	, veh/h		173	0	0	3	0	146	17	0	268	175	398	51
Adjusted Satura	ation Flo	ow Rate <i>(s)</i> , veh/h/ln		849	0	0	1140	0	1525	973	0	1842	1075	1810	1595
Queue Service	time (g	s), S		6.2	0.0	0.0	0.1	0.0	3.7	0.7	0.0	5.1	6.8	8.5	1.0
Cycle Queue C	learanc	e Time <i>(gc)</i> , s		10.0	0.0	0.0	10.1	0.0	3.7	9.1	0.0	5.1	11.9	8.5	1.0
Capacity (c), ve	h/h			416			339		554	424		837	520	823	725
Volume-to-Capa	acity Ra	atio (X)		0.415	0.000	0.000	0.009	0.000	0.264	0.041	0.000	0.320	0.336	0.484	0.070
Available Capa	city (Ca)	, veh/h		416			339		554	512		1005	618	987	870
Back of Queue	(Q), ve	h/ln		1.8			0.0		1.0	0.1		1.6	1.6	2.6	0.3
Overflow Queue	e <i>(Q₃)</i> , v	veh/ln		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Queue Storage Ratio <i>(RQ)</i>				0.2	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.4	0.1	0.0
Uniform Delay (d1), s/veh				14.5			18.4		12.3	13.7		9.6	13.4	10.5	8.4
Incremental Delay (d2), s/veh				0.2	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.1	0.2	0.0
Initial Queue Delay <i>(d₃)</i> , s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay <i>(d)</i> , s/veh				14.7			18.4		12.4	13.7		9.7	13.5	10.7	8.5
Level of Service	_evel of Service (LOS)						В		В	В		Α	В	В	А
Approach Delay	pproach Delay, s/veh / LOS				'	В	12.5	5	В	9.9		А	11.3 B		
Intersection Del	ersection Delay s/veh / LOS					1.	1.6			В					

													1		
General Inform	nation	1						!	ntersec	tion Inf	ormatio	on	- 1	JĮL	
Agency		ТМА							Duration	, h	1.00				
Analyst		AAC		Analys	is Date	Apr 1	7, 2012	/	Area Typ	e	Other		44		44. 154
Jurisdiction		Town of Chester		Time F	Period	AM P	eak Hou	ır I	PHF		0.87		÷	w‡t S	*
Intersection		Black Meadow Roa	d	Analys	is Year	No-Bu	uild	/	Analysis	Period	1> 7:(00	1		r F
File Name		02 Black Meadow F	load an	d Kings	Highwa	ay NBA	M.xus							ጎዮ	
Project Descrip	tion												h	4 1 14	1
Demonstration	4!				50		_		`		ND		ľ	0.0	
Demand Inform	nation				EB		<u> </u>	VVE T	5	<u> </u>	NB		<u> </u>	SB	
Approach Move	ement			L	1	R	L	1	R	L	1	R	L	1	R 107
Demand (v), ve	n/n			67	16	45	9	59	310	33	414	4	107	194	107
Signal Informa	tion				UE.	Б									ĸ
Cycle, s	55.0	Reference Phase	2			Jez á	=					4			
Offset, s	0	Reference Point	- Fnd			<u> </u>					_				4
Uncoordinated	Yes	Simult Gap F/W	On	Green	25.0	20.0	0.0	0.0	0.0	0.0	_		-+-		_
Force Mode	Fixed	Simult Gap N/S	On	Red	4.0	4.0	0.0	0.0	0.0	0.0 0.0			Y	7	€ .
1 croc mode	T INCU	olinali. Oup 110	on	Ttou	110	110	10.0 10.0		0.0	10.0					_
Timer Results				EBL	_	FBT		L	WBT	NBI	_	NBT	SBI	_	SBT
Assigned Phase	Э			8		8	4		4	6		6	2		2
Case Number				8.0		8.0			6.0	6.0		6.0	5.0		5.0
Phase Duration, s				25.0		25.0	25.0)	25.0	30.0)	30.0	30.0)	30.0
Change Period	, (Y+R₀)	. S		5.0		5.0	5.0		5.0	5.0		5.0	5.0		5.0
Max Allow Hea	dwav (N	//AH). s	_	3.4		3.4	3.4		3.4	3.3		3.3	3.3		3.3
Queue Clearan	ce Time	e (a _s), s		21.3	;	21.3	21.8	3	21.8	12.9)	12.9	20.0)	20.0
Green Extensio	n Time	(ge), s	_	0.0		0.0	0.0		0.0	2.1		2.1	1.8		1.8
Phase Call Pro	bability	(3-), -		1.00)	1.00	1.00)	1.00	1.00)	1.00	1.00)	1.00
Max Out Proba	bility		_	1.00	, –	1.00	1.00)	1.00	0.01		0.01	0.12	2	0.12
	- ···· ,													-	
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			3	8	18	7	4	14	1	6	16	5	2	12
Adjusted Flow F	Rate <i>(v)</i>	, veh/h		147	0	0	10	0	424	38	0	480	123	223	123
Adjusted Satura	ation Flo	ow Rate <i>(s)</i> , veh/h/ln		428	0	0	1156	0	1514	1120	0	1806	829	1696	1495
Queue Service	time <i>(g</i> s	s), s		5.7	0.0	0.0	0.5	0.0	13.6	1.2	0.0	10.9	7.1	4.5	2.7
Cycle Queue C	learanc	e Time <i>(gc</i>), s		19.3	0.0	0.0	19.8	0.0	13.6	5.7	0.0	10.9	18.0	4.5	2.7
Capacity <i>(c)</i> , ve	h/h			255			145		551	548		821	344	771	680
Volume-to-Cap	acity Ra	atio <i>(X)</i>		0.576	0.000	0.000	0.071	0.000	0.770	0.069	0.000	0.585	0.358	0.289	0.181
Available Capa	city (Ca)	, veh/h		255			145		551	650		985	419	925	816
Back of Queue	(Q), vel	n/In		1.8			0.1		4.7	0.3		3.3	1.2	1.3	0.7
Overflow Queu	e <i>(Q3)</i> , v	/eh/ln		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Queue Storage Ratio (RQ)				0.2	0.0	0.0	0.0	0.0	0.3	0.1	0.0	0.1	0.3	0.1	0.1
Uniform Delay (d1), s/veh				17.9			27.1		15.5	11.2		11.1	17.8	9.4	8.9
Incremental Delay (d2), s/veh				2.1	0.0	0.0	0.1	0.0	6.2	0.0	0.0	0.2	0.2	0.1	0.0
Initial Queue Delay <i>(d₃</i>), s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh				20.0			27.2		21.7	11.2		11.4	18.1	9.5	9.0
Level of Service (LOS)				С			С		С	В		В	В	A	А
Approach Delay	Approach Delay, s/veh / LOS					С	21.8	3	С	11.4		В	11.6	3	В
Intersection De	tersection Delay s/veh / LOS					1:	5.2			В					

General Inform	eneral Information gency TMA							<u> </u>	ntersec	tion Inf	ormatio	on		4 /0 45 + 1 	5- L	
Agency		TMA						[Duration	, h	1.00			***		
Analyst		AAC		Analys	sis Date	Apr 1	7, 2012	/	Area Typ	e	Other		1			
Jurisdiction		Town of Chester		Time F	Period	PM P	eak Hou	ır F	PHF		0.99		-÷		→ → <u>#</u> ✓ – –	
Intersection		Black Meadow Roa	d	Analys	sis Year	· No-Bι	uild	/	Analysis	Period	1> 7:0	00	-		*	
File Name		02 Black Meadow F	Road an	d Kings	Highw	ay NBP	M.xus							ጎቅ		
Project Descrip	tion												h	414919	18	
				_			11									
Demand Inform	nation				EB			WB	3		NB			SB	8	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R	
Demand (v), ve	h/h			117	55	59	7	44	158	45	283	9	226	421	53	
				ù.	1 11:					1			_			
Signal Informa	ition		-		215	3 4									→	
Cycle, s	55.0	Reference Phase	2		L 547	"₿ °						1	2		¥	
Offset, s	0	Reference Point	End	Green	25.0	20.0	0.0	0.0	0.0	0.0						
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	4.0	4.0	0.0	0.0	0.0	0.0			**	_		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	0.0	0.0	0.0	0.0		5	6	7	Y 8	
1				_			_	_		_	1		_			
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	-	NBT	SBI		SBT	
Assigned Phase	e			8		8	4		4	6		6	2		2	
Case Number	Case Number					8.0	6.0		6.0	6.0		6.0	5.0		5.0	
Phase Duration, s				25.0		25.0	25.0)	25.0	30.0)	30.0	30.0)	30.0	
Change Period,	Change Period, (Y+Rc), s					5.0	5.0		5.0	5.0		5.0	5.0		5.0	
Max Allow Head	dway <i>(N</i>	ИАН), s		3.3		3.3	3.3		3.3	3.2		3.2	3.2		3.2	
Queue Clearan	ce Time	e (gs), s		15.1		15.1	15.4	1	15.4	13.2	2	13.2	17.7	7	17.7	
Green Extensio	n Time	<i>(g⊧),</i> s		0.5		0.5	0.5		0.5	2.2		2.2	2.1		2.1	
Phase Call Prol	bability			1.00)	1.00	1.00)	1.00	1.00)	1.00	1.00)	1.00	
Max Out Probal	bility			0.38	3	0.38	0.46	6	0.46	0.02	2	0.02	0.06	3	0.06	
	_			EB						_			_			
Movement Gro	oup Res	sults			EB			WB			NB	_		SB	_	
Approach Move	ement			L	T	R	L	T	R	L	T	R	L	Т	R	
Assigned Move	ment			3	8	18	7	4	14	1	6	16	5	2	12	
Adjusted Flow H	Rate (v)), veh/h		233	0	0	7	0	204	45	0	295	228	425	54	
Adjusted Satura	ation Flo	ow Rate (s), veh/h/ln		906	0	0	1079	0	1542	949	0	1834	1049	1810	1595	
Queue Service	time (g	s), S		7.7	0.0	0.0	0.3	0.0	5.3	2.0	0.0	5.7	9.9	9.2	1.0	
Cycle Queue C	learanc	e Time (gc), s		13.1	0.0	0.0	13.4	0.0	5.3	11.2	0.0	5.7	15.7	9.2	1.0	
Capacity (c), ve	h/h			428			267		561	403		834	498	823	725	
Volume-to-Capa	acity Ra	atio (X)		0.545	0.000	0.000	0.026	0.000	0.364	0.113	0.000	0.354	0.458	0.517	0.074	
Available Capa	city (Ca)	, veh/h		428			267		561	490		1001	594	987	870	
Back of Queue	(Q), ve	h/ln		2.7			0.1		1.5	0.4		1.8	2.0	2.8	0.3	
Overflow Queue	e (Q3), v	veh/ln		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Queue Storage	Queue Storage Ratio (RQ)				0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.1	0.4	0.1	0.1	
Uniform Delay (d1), s/veh				15.4			21.1		12.8	14.7		9.7	14.8	10.7	8.5	
Incremental Delay (d₂), s/veh				0.8	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.2	0.2	0.0	
Initial Queue Delay (d3), s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh				16.2			21.2		13.0	14.7		9.8	15.1	10.9	8.5	
Level of Service	_evel of Service (LOS)						С		В	В		A	В	В	A	
Approach Delay	pproach Delay, s/veh / LOS				16.2 B 13.3				В	10.5	5	В	12.1		В	
Intersection Del	tersection Delay s/veh / LOS					12	2.5				B					

													1		
General Inform	nation							I	ntersec	tion Inf	ormatio	on	- É	→ 20 00 ↓ 1	5- L
Agency		TMA						[Duration	, h	1.00			***	
Analyst		AAC		Analys	sis Date	Apr 1	7, 2012	/	Area Typ	e	Other		4		47.
Jurisdiction		Town of Chester		Time F	Period	AM P	eak Hou	ır F	PHF		0.87		÷		
Intersection		Black Meadow Roa	d	Analys	sis Year	Build		/	Analysis	Period	1> 7:0	00	1		*
File Name		02 Black Meadow F	Road an	d Kings	Highwa	ay BAM	.xus							5 10	
Project Descrip	tion												h	4 1 49 M	1
				_									_		
Demand Inform	nation				EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), ve	h/h			71	17	46	9	61	310	35	414	4	107	194	80
)	1 11:				_	Ī			_		_
Signal Informa	tion		0		245	1.3 \$									\rightarrow
Cycle, s	55.0	Reference Phase	2		1 517	"R"						1	2		4
Offset, s	0	Reference Point	End	Green	25.0	20.0	0.0	0.0	0.0	0.0					
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	4.0	4.0	0.0	0.0	0.0	0.0			**	_	-4
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	0.0	0.0 0.0		0.0	_	5	6	7	¥ 8
								. 1							
Timer Results				EBI		EBT	WB		WBT	NB	-	NBT	SBI		SBT
Assigned Phase	e			8		8	4		4	6		6	2		2
Case Number				8.0		8.0	6.0		6.0	6.0		6.0	5.0		5.0
Phase Duration, s				25.0		25.0	25.0		25.0	30.0)	30.0	30.0)	30.0
Change Period	$(Y+R_c)$), s		5.0		5.0	5.0		5.0	5.0		5.0	5.0		5.0
Max Allow Hea	dway (N	//AH), s		3.4		3.4	3.4		3.4	3.3		3.3	3.3		3.3
Queue Clearan	ce Time	e (gs), s		22.0)	22.0	22.0)	22.0	12.9)	12.9	20.0)	20.0
Green Extensio	n Time	<i>(g⊧),</i> s		0.0		0.0	0.0		0.0	2.0		2.0	1.8		1.8
Phase Call Prol	bability			1.00)	1.00	1.00)	1.00	1.00)	1.00	1.00)	1.00
Max Out Proba	bility			1.00		1.00	1.00)	1.00	0.01		0.01	0.11		0.11
	-	14		_	50						ND		_	0.0	
Movement Gro	oup Res	sults			EB			VVB			NB			SB	
Approach Move	ement			L	1	R			R			R	L		R
Assigned Move	ment	A 1.0		3	8	18	/	4	14	1	6	16	5	2	12
Adjusted Flow I		, ven/n		154	0	0	10	0	426	40	0	480	123	223	92
Adjusted Satura		w Rate (s), ven/n/in		419	0	0	1149	0	1515	1120	0	1806	829	1696	1495
Queue Service	time (g.	s), S		6.3	0.0	0.0	0.0	0.0	13.7	1.3	0.0	10.9	7.1	4.5	2.0
	learanc	e Time (<i>gc)</i> , s		20.0	0.0	0.0	20.0	0.0	13.7	5.8	0.0	10.9	18.0	4.5	2.0
Capacity (c), ve	en/n			252	0.000	0.000	131	0.000	551	548	0.000	821	344	771	0.405
Volume-to-Cap	acity Ra			0.610	0.000	0.000	0.079	0.000	0.774	0.073	0.000	0.585	0.358	0.289	0.135
Available Capa	CITY (Ca)	, ven/n		252		<u> </u>	131		551	650		985	419	925	816
Back of Queue	(Q), vel	h/ln		1.9			0.1		4.8	0.3		3.3	1.2	1.3	0.5
Overflow Queu	e (Q3), v	veh/In		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Queue Storage Ratio (<i>RQ</i>)				0.2	0.0	0.0	0.0	0.0	0.3	0.1	0.0	0.1	0.3	0.1	0.1
Uniform Delay (d1), s/veh				18.6			27.5		15.5	11.2		11.1	17.8	9.4	8.7
Incremental Delay (d2), s/veh				3.1	0.0	0.0	0.1	0.0	6.4	0.0	0.0	0.2	0.2	0.1	0.0
Initial Queue Delay (d3), s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh				21.7			27.6		21.9	11.3		11.4	18.1	9.5	8.8
Level of Service	Level of Service (LOS)						C		С	В		В	В	A	A
Approach Delay	pproach Delay, s/veh / LOS					С	22.2		С	11.4 B 11.7 B					
Intersection De	ersection Delay s/veh / LOS					15	5.5			В					

General Inform	nation							<u> </u>	ntersec	tion Inf	ormatio	on			5 L
Agency		TMA						[Duration	, h	1.00			***	
Analyst		AAC		Analys	sis Date	Apr 1	7, 2012	/	Area Typ	e	Other		4		47.
Jurisdiction		Town of Chester		Time F	Period	PM P	eak Hou	ır F	PHF		0.99		- +		*
Intersection		Black Meadow Roa	d	Analys	sis Year	Build		/	Analysis	Period	1> 7:0	00	1		× F
File Name		02 Black Meadow F	Road an	d Kings	Highw	ay BPM	.xus							5 10	
Project Descrip	tion												h	1 1 H4 19	
Demand Inform	nation				EB			WB	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), ve	h/h			124	57	61	7	45	158	46	283	9	226	421	58
Oine al luí famma	41)	1 11:	1 6	1	_	_				_		
Signal Informa	tion	Defense Dhees	0		243										\rightarrow
Cycle, s	55.0	Reference Phase	2			"R"						1	2		4
Offset, s	0	Reference Point	End	Green	25.0	20.0	0.0	0.0	0.0	0.0					
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	4.0	4.0	0.0	0.0	0.0	0.0	_		∇	-	-4
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	0.0	0.0	0.0	0.0		5	6	7	¥ 8
						EDT			MOT			NET	0.01		ODT
Timer Results				EBI	EBT		WB		WB1	NBI	-	NBT	SBI		SBI
Assigned Phase	e			8		8	4		4	6		6	2	\rightarrow	2
Case Number	Case Number Phase Duration is					8.0	6.0		6.0	6.0		6.0	5.0		5.0
Phase Duration, s				25.0		25.0	25.0)	25.0	30.0)	30.0	30.0)	30.0
Change Period	Change Period, (Y+Rc), s					5.0	5.0		5.0	5.0		5.0	5.0		5.0
Max Allow Hea	dway <i>(N</i>	//AH), s		3.3		3.3	3.3		3.3	3.2		3.2	3.2		3.2
Queue Clearan	ce Time	e (g₅), s		16.0)	16.0	16.3	3	16.3	13.2	2	13.2	17.7	7	17.7
Green Extensio	n Time	<i>(g_e),</i> s		0.5		0.5	0.4		0.4	2.2		2.2	2.1		2.1
Phase Call Prol	bability			1.00)	1.00	1.00)	1.00	1.00)	1.00	1.00)	1.00
Max Out Proba	bility			0.66		0.66	0.80)	0.80	0.02	2	0.02	0.07	7	0.07
	-	14		FB							ND		_	0.0	
Movement Gro	oup Res	sults			EB			VVB			NB			SB	
Approach Move	ement			L	1	R			R			R			R
Assigned Move	ment			3	8	18	/	4	14	1	6	16	5	2	12
Adjusted Flow I	Rate (v)), veh/h		244	0	0	/	0	205	46	0	295	228	425	59
Adjusted Satura	ation Flo	ow Rate (s), veh/h/ln		897	0	0	1068	0	1543	949	0	1834	1049	1810	1595
Queue Service	time (g.	s), S		8.6	0.0	0.0	0.3	0.0	5.4	2.0	0.0	5.7	9.9	9.2	1.1
Cycle Queue C	learanc	:e Time (<i>gc)</i> , s		14.0	0.0	0.0	14.3	0.0	5.4	11.2	0.0	5.7	15.7	9.2	1.1
Capacity (c), ve	en/n	r 00		425	0.000	0.000	248	0.000	561	403	0.000	834	498	823	725
Volume-to-Cap	acity Ra			0.575	0.000	0.000	0.029	0.000	0.365	0.115	0.000	0.354	0.458	0.517	0.081
Available Capa	City (Ca)	, veh/h		425		<u> </u>	248		561	490		1001	594	987	870
Back of Queue	(Q), ve	h/ln		2.9			0.1		1.5	0.4		1.8	2.0	2.8	0.3
Overflow Queu	Overflow Queue <i>(Q₃)</i> , veh/ln				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Queue Storage	Queue Storage Ratio <i>(RQ)</i>				0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.1	0.4	0.1	0.1
Uniform Delay (d1), s/veh				15.7			21.9		12.8	14.7		9.7	14.8	10.7	8.5
Incremental Delay (d2), s/veh				1.2	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.2	0.2	0.0
Initial Queue Delay (d3), s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh				17.0			22.0		13.0	14.7		9.8	15.1	10.9	8.5
Level of Service	_evel of Service (LOS)						С		В	В	L	A	В	B	A
Approach Delay	pproach Delay, s/veh / LOS)	В	13.3	3	В	10.5 B 12.0 B					
Intersection De	ersection Delay s/veh / LOS					12	2.7			В					