STORMWATER POLLUTION PREVENTION PLAN

FOR

Suresky & Sons

Elkay Drive

TOWN OF CHESTER ORANGE COUNTY, NEW YORK

PREPARED BY

71 Clinton Street Montgomery, NY 12549

JULY 2015 REVISED OCTOBER 2017

Samuel

TABLE OF CONTENTS

SEC	TION		PAGE
1.0	INTRO	DDUCTION	4
	1.1	PURPOSE	4
2.0	1.2	SCOPEECT DESCRIPTION	
		OGRAPHY AND SOILS	
3.0			
4.0		IODOLOGY	
5.0	STOR	MWATER MANAGEMENT PLANNING	
	5.1 5.1.1	INITIAL SITE PLANNING	
	-	PROPOSED CONDITIONS	
	5.2	WATER QUALITY VOLUME	8
	5.3 5.4	RUNOFF REDUCTION VOLUMEAPPLICATION OF STANDARD SMP'S FOR THE REVISED WQv	
	5.4 5.5	VOLUME AND PEAK RATE CONTROL	
	5.5.1		
- -		PEAK RATE CONTROL	
5.6		MWATER RUNOFF AND NATURAL RESOURCE MANAGEMENT	
6.0		SION AND SEDIMENT CONTROL MEASURES	
7.0		TERM MAINTENANCE OF WATER QUALITY FACILITIES	
8.0	SUMN	MARY OF FINDINGS AND CONCLUSIONS	19
		<u>TABLES</u>	
TABI	LE 1: E	XISTING DRAINAGE AREA CHARACTERISTICS	
TABI	_E 2: P	ROPOSED DRAINAGE AREA CHARACTERISTICS	
TABI	LE 3: R	EQUIRED WATER QUALITY VOLUMES	
TABI	LE 4: S	PECIFIC REDUCTION FACTOR (S)	
TABI	LE 5: R	UNOFF REDUCTION VOLUMES & REVISED WQ√	
TABI	_E 6: W	/Q√ PROVIDED IN STANDARD SMP'S	
TABI	LE 7: C	ALCULATED CHANNEL PROTECTION VOLUME	
TABI	LE 8: C	p√ EXTENDED DETENTION TIMES	
TABI	LE 9: S	UMMARY OF RESULTS AT THE DESIGN POINTS	

APPENDICES

- APPENDIX 1: FIGURES
- APPENDIX 2: SOILS MAP AND CLASSIFICATIONS
- APPENDIX 3: CURVE NUMBER CALCULATIONS
- APPENDIX 4: TIME OF CONCENTRATION CALCULATIONS
- APPENDIX 5: WATER QUALITY VOLUME CALCULATIONS & RUNOFF REDUCTION
 - **VOLUME CALCULATIONS**
- APPENDIX 6: HYDROGRAPH SUMMARIES & DIAGRAMS
- APPENDIX 7: 1 YEAR DESIGN STORM HYDROGRAPHS
- APPENDIX 8: 10 YEAR DESIGN STORM HYDROGRAPHS
- APPENDIX 9: 100 YEAR DESIGN STORM HYDROGRAPHS
- APPENDIX 10: RESERVOIR REPORTS, CHANNEL PROTECTION VOLUME
 - CALCULATIONS, SEDIMENT BASIN CALCULATIONS
- APPENDIX 11: CONSTRUCTION SITE INSPECTION FORM, NOTICE OF INTENT & MS4
 - **ACCEPTANCE**
- APPENDIX 12: CONSTRUCTION WASTE MANAGEMENT & SPILL PREVENTION PLANS
- APPENDIX 13: INFILTRATION PONDS SOILS TESTING RESULTS

1.0 INTRODUCTION

Engineering & Surveying Properties, PC has prepared this report summarizing the impact of the proposed development of the property, known as Suresky & Sons, will have on downstream properties and receiving waters.

1.1 PURPOSE

The purpose of the Stormwater Pollution Prevention Plan (SWPPP) is to:

- a. Maintain existing drainage patterns and continue the conveyance of upland watershed runoff:
- b. Mitigate potential stormwater quality and peak stormwater flow impacts, and prevent soil erosion and sedimentation resulting from stormwater runoff.
- c. Incorporate Green Technologies to effectively treat water quality and reintroduce runoff back into the ground to the maximum extent possible.

1.2 SCOPE

The scope of the SWPPP for Suresky & Sons described herein is as follows:

- a. Describe and estimate existing stormwater runoff conditions;
- b. Describe and estimate proposed stormwater runoff conditions;
- c. Describe and evaluate stormwater management practices planned as part of the proposed project.

2.0 PROJECT DESCRIPTION

The project site is ±15.87 acres in size and is located on Elkay Drive in the Town of Chester, Orange County, New York. The site is better described as Town of Chester tax lots Section 6 Block 1 Lot 70.12. A site location map is included as Figure 1 in Appendix 1.

As proposed, the Suresky & Sons project involves the development of the aforementioned vacant lot into a vehicle storage and prep facility. Multiple stormwater management facilities will be constructed within the project limits to mitigate stormwater runoff impacts to the greatest extent practical and to reduce peak rate stormwater flows to or below predevelopment levels.

The project site is an irregular shaped area of land that is bordered by industrial, commercial and residential properties. The current site topography consists of varying slopes. The site has a high point elevation to the east of the site and slopes downward in

all directions eventually to low points along Kings Highway and to an existing culvert at the property line of an adjacent property along Elkay Drive.

3.0 TOPOGRAPHY AND SOILS

The site consists of slopes varying from steep to relatively flat. Information assembled by the U.S. Department of Agriculture Soil Conservation Service printed in the Soil Survey of Orange County identifies the presence of Erie gravelly silt loam (ErA), Hoosic gravelly sandy loam (HoC), Madalin silt loam (Ma), Mardin gravelly silt loam (MdC), Pits, gravel (Pt), Raynham silt loam (Ra) and Rock outcrop Nassau complex (RSF) which are designated as hydrologic group "D" soils. There is also Hoosic gravelly sandy loam (HoC) which is designated as an "A" soils group. A soils map and soil classifications are included as Appendix 2.

4.0 METHODOLOGY

The methodology utilized for this analysis is based upon the U.S.D.A. Soil Conservation Service's Technical Release No. 20 and Technical Release No. 55, as utilized by the software entitled Hydraflow Hydrographs.

Hydraflow Hydrographs, developed by Intelisolve of Alpharetta, Georgia, is a Microsoft Windows based program used to analyze hydrology and hydraulics for modeling stormwater runoff. The model utilizes the latest techniques to predict the stormwater flows from any given storm event.

Hydraflow Hydrographs has the capability of computing hydrographs (representing discharge rates for specific watershed conditions, precipitation and geologic factors), combining hydrographs, and routing flows through pipes, streams and ponds. A drainage model can consist of four different components - subareas, combinations, reaches and reservoirs.

A subarea consists of a relatively homogeneous area of land, which produces a volume and rate of runoff unique to that watershed. A subarea combination is the hydrologic addition of two subareas in order to determine the peak runoff at a design point. A reach is a channelized conveyance structure which routes the runoff from one point to another. A reservoir consists of a natural or man-made impoundment which temporarily stores stormwater runoff and that empties in a manner determined by various hydraulic structures located at its outlet.

The SWPPP for Suresky & Sons was based upon the New York State Stormwater Management Design Manual (NYSSMDM) published by the New York State Department of Environmental Conservation (NYSDEC) last revised January 2015. Criteria set forth by this manual, requires analysis and determination of the required Water Quality Volume (Wqv), to provide extended detention of the 1-year storm event for Stream Channel Protection (Cpv), to control the peak discharge of the 10-year storm event also known as Overbank Flood Protection Criteria (Qp), and to control the peak discharge and safely pass the 100-year storm event otherwise known as Extreme Flood Control Criteria (Qf).

The SWPPP for Suresky & Sons was developed utilizing the "six step" process for Stormwater Site Planning and Practice Selection. The six steps consist of site planning, determination of the water quality treatment volume, runoff reduction volumes applied through the use of "green technologies", application of standard stormwater management practices (SMP's) for remaining water quality volumes, and application of volume and peak rate control methods as required. Each of the six "steps" is further discussed in detail within this report.

5.0 STORMWATER MANAGEMENT PLANNING

5.1 INITIAL SITE PLANNING

Initial site planning included the development of a map showing existing natural resources and drainage patterns. The map was created utilizing actual site visits and a boundary survey completed by Engineering and Surveying Properties, PC on June 5, 2015 and a previous topography survey completed for the property owner. This existing conditions map is included as Figure 2 in Appendix 1.

The hydrologic and hydraulic analysis was performed by delineating the tributary watershed to the design point and then dividing the tributary areas into relatively homogeneous subareas. The separation of the watershed into subareas was dictated by watershed conditions, methods of collection, conveyance and point of discharge. Watershed characteristics for each subarea were then assessed from topographical maps, soil surveys, site investigations and land use maps.

5.1.1 EXISTING CONDITIONS

The existing watershed within the site and areas contributory to the site's surface water runoff discharge to several different design points. A design point represents the point at which stormwater, generated within a

watershed, will exit the project site via either sheet flow along a linear boundary or as a point discharge. Figure 2 in Appendix 1 identifies the watershed boundaries along with each design point. Each watershed has been modeled to determine the existing runoff characteristics to ensure that the proposed project will not have an adverse impact once completed. The characteristics of the existing watersheds are detailed in Table 1 below.

The watersheds were delineated and a contributory area, a curve number (CN) and time of concentration (Tc) were determined. Calculations for the CN's and Tc's are included in Appendices 3 and 4, respectively. It should be noted that the total contributory area is not equal to the total lot area. This is due to the fact that the parcel being developed is within a larger watershed that has a contributory area outside of the project boundary limits.

TABLE 1: EXISTING DRAINAGE AREA CHARACTERISTICS

DRAINAGE AREA DESIGNATION	DRAINAGE AREA SIZE (Ac.)	CN	Tc (min)
EX A	7.64	75	18.60
EX B	13.05	76	25.80
EX C	8.77	77	19.80
TOTAL	29.46		

The watershed peak rate discharges for the 1, 10 and 100 year - 24 hour storm events were computed and evaluated at the design point. The peak rates are presented in Table 9. Stormwater computations are attached at the end of this report in Appendices 7, 8 and 9.

5.1.2 PROPOSED CONDITIONS

For this analysis, the post-development watershed was broken down into a network consisting of five (5) subareas, one (1) reach, and two (2) proposed stormwater facilities. The subareas under the proposed development are identified in Figure 3. This report then re-analyzes the proposed condition for curve number (CN) and time of concentration (Tc) on the project site. The characteristics of each proposed subarea is detailed in Table 2 below.

TABLE 2: PROPOSED DRAINAGE AREA CHARACTERISTICS

DRAINAGE AREA DESIGNATION	DRAINAGE AREA SIZE (Ac.)	CN	Tc (min)
PR-A	7.51	75	18.60
PR-B	9.77	87	19.80
PR-C1	9.34	77	22.20
PR-C2	1.35	81	15.00
PR-C3	1.49	93	1.80
TOTAL	29.46		

The watershed peak rate discharges for the 1, 10 and 100 year - 24 hour storm events were computed and evaluated at the design point. The peak rates are presented in Table 9. Stormwater computations are attached at the end of this report in Appendices 7, 8 and 9.

5.2 WATER QUALITY VOLUME

The second step of the Stormwater Site Planning process is determination of the required water quality treatment volume (WQ_v). WQ_v is calculated using the 90% Rule as defined by NYSDEC Stormwater Management Design Manual. The 90% Rule is defined as:

$$WQ_v = [(P)(R_v)(A)] / 12$$

Where: P is the 90% Rainfall Event Number

 R_v is equal to 0.05 + 0.009*I (Minimum 0.2)

I is the Impervious Cover in percent

A is the subarea total acreage

There are multiple stormwater management practices (SMP's) included in this SWPPP to treat the quality of stormwater runoff prior to discharging from the site. Possible pollutants that may be present are expected to be from but not limited to sediment deposited on newly created impervious surfaces, possible erosion due to construction, and airborne particles created by wind during construction.

The WQ_v was calculated for the entire watershed within the area of development; the results are included in Table 3 below.

TABLE 3: REQUIRED WATER QUALITY VOLUME

WATERSHED	WQv (Ac-ft)
PR-B	0.554
PR-C	0.125

5.3 RUNOFF REDUCTION VOLUME

Step three of the Stormwater Site Planning process is the incorporation of "green infrastructure technologies" and standard SMP's with runoff reduction volume (RR_v) capacity. The intended result of RR_v, is to treat 100% of the WQ_v and replicate pre-development hydrology, however if unattainable, provide the minimum RR_v required and provide additional treatment for the remaining WQ_v. Each of the following green technologies and standard SMP's with RR_v capacity were analyzed for implementation along with an explanation of how they are used or unable to be used on this project.

Green Technologies

- Conservation of Natural Areas
 - A portion of the site will remain unaffected by the proposed project; this area is protected by zoning laws that state that a 50 foot wide buffer be provided on all property lines adjacent to a residential property. These areas were not accounted for in the RRv calculations to provide a more conservative design.
- Sheet flow to Riparian Buffers / Filter Areas
 - Riparian buffers were not considered since all "point discharges" discharge to an existing storm system.
- Vegetated Open Swales
 - Due to the limitations set forth by the contributory areas along with the existing and proposed topography of the site, no vegetative swales were incorporated into the design although several small vegetative swales are used for conveyance to standard stormwater practices on site.
- Tree Planting / Tree Box

 The proposed site design will include a landscaping design however the planting strips will not be utilized for the treatment of WQ_v and area therefore not applied to this project.

Disconnection of Rooftop runoff

 Rooftop disconnect will not be utilized as an area reduction; however the stormwater contributory to the rooftop of the proposed structure will be treated through other green technologies and in standard SMP's.

Stream Daylighting

 There are no closed drainage courses on site, and therefore the practice of stream daylighting was not utilized.

Rain Gardens

 The limitation of contributory drainage areas result in rain gardens not being utilized as a green technology for this project.

Green Roof

- Green roofs are not proposed on the proposed structures for the following reasons:
 - Cold Climate restricts, planting type and survival.
 - Maintenance procedures
 - Limited access provisions

Stormwater Planters

 Stormwater planters are suitable for small runoff areas such as rooftops or plaza and courtyards. Stormwater planters work very well within urban redevelopment projects with appropriate soils. Therefore, the green technology of stormwater planters was not implemented.

Rain Tanks/Cistern

 Rain Tanks and cisterns are well-suited to treat rooftop runoff, however as previously stated, the rooftop runoff will be treated through standard SMP's. In addition, there are cold climate concerns associated with rain tanks and cisterns that could cause problems if used at this site.

Porous Pavement

 The anticipated high volume of vehicular movement and issues associated with snow removal can not be supported. Therefore, porous pavement technology was not included in the design of the project.

Standard SMP's with RR_v Capacity

Infiltration Practice

 The project proposes the use of two (2) infiltration basins, one near the proposed building, with the second located near Kings Highway.

Bio-Retention Practice

 A bio-retention facility was not considered for this site due to limitations set forth by the natural grading of the site. The use of underdrains would not be feasible as there would not be sufficient elevation to daylight the underdrains to a discharge point.

Dry Swale (Open Channel Practice)

Similarly to vegetative swale, dry swales were not considered for this project due to limitations created by the contributory area requirements and the varying topography of the site. Any such swales would create a larger area of disturbance for the project.

The RR_v for each of the green technology used as stated above has been calculated for the Design Point. The total RR_v was calculated and compared to the WQ_v for the Design Point. The green technologies proposed were able to reduce the tributary WQ_v by 100%.

Step four of the process is to determine the $RR_{v(min)}$ is based upon the hydrological soil group (HSG) classification within the watershed and has a defined Specific Reduction Factor (S). The reduction factors for each HSG are shown below in Table 4. Based upon the $RR_{v(min)}$ a revised WQ_v was then calculated to determine the WQ_v required to be treated by standard SMP's.

HSG	S
А	0.55
В	0.40
С	0.30
D	0.20

 $RR_{V(min)}$ is then compared to the total RR_{V} provided to ensure that the green technologies proposed provide the minimum reduction of the WQ_{V} as RR_{V} . The $RR_{V(min)}$, the total RR_{V} provided and the revised required WQ_{V} to be provided by standard SMP's are shown below in Table 5. The calculations for the required and adjusted water quality volumes along with the runoff reduction volumes are shown in Appendix 5.

TABLE 5: RUNOFF REDUCTION VOLUMES & REVISED WQv

WATERSHED	RR _{v MIN} (Ac- ft)	Total RR _v	Revised WQ _v (Ac-ft)
PR-B	0.105	0.499	0.000
PR-C	0.025	0.112	0.000

5.4 APPLICATION OF STANDARD SMP'S FOR THE REVISED WQv

The RR $_{\text{V}}$ does reduce the required WQ $_{\text{V}}$ treatment however; it does not completely eliminate the need to provide treatment through standard stormwater management practices. Continuing with the Stormwater Site Planning process, step five is to ensure that the remaining WQ $_{\text{V}}$ is provided. WQ $_{\text{V}}$ is provided within each of the proposed stormwater management facilities. The WQ $_{\text{V}}$ provided in each of the standard stormwater management practices is shown below in Table 6.

TABLE 6: WQ_v PROVIDED IN STANDARD SMP'S

WATERSHED	Revised Required WQ _v (Ac-ft)	WQ _v Provided (Ac-ft)	
PR-B	0.000	0.570	
PR-C	0.000	0.321	

5.5 VOLUME AND PEAK RATE CONTROL

The sixth and final step of the Stormwater Site Planning process is to apply volume and peak rate control through the use of standard stormwater management

practices. Two (2) on-site stormwater facilities, Infiltration Basins (I-2) are proposed to mitigate any increase in peak runoff from the proposed site improvements. The basins have been designed to provide both water quality and peak rate control in accordance with NYSDEC Phase II stormwater guidelines. The following NYSDEC stormwater design criteria are achieved:

- All pretreatment ponds are to be lined with clay, or impermeable fabric, to prevent potential infiltration of water quality contaminants into the aquifer.
- Infiltration practices cannot be located on areas with natural slopes greater than 15%
- Infiltration practices cannot be located in fill soils.
- The bottom of the infiltration facility shall be separated by at least three (3)
 feet vertically from the seasonally high water table or bedrock layer.
- Infiltration practices shall be located at least 100 feet horizontally from any water supply well.
- Infiltration basins shall be setback 25 feet down gradient from structures and septic systems.
- All infiltration systems shall be designed to fully de-water the entire WQv within 48 hours after the storm event.
- If the f_c for the underlying soils is greater than 5.00 inches per hour, 100% of the WQ_V shall be pretreated prior to entry into an infiltration facility.

5.5.1 CHANNEL PROTECTION VOLUME

The required volume control consists of Channel Protection Volume (Cp_v) which is designed to protect downstream channels from erosion. The Cp_v is achieved through providing extended detention of the 1-year storm event for any volume not previously reduced through runoff reduction volume reduction (RR_v), for a period of 24 hours. The calculated 1 year storm event runoff volume along with the required Cp_v volume provided are shown in Table 7. The Cp_v detention time is shown in Table 8 below and the calculated results are shown in Appendix 9.

TABLE 7: CALCULATED CHANNEL PROTECTION VOLUME (Cpv)

BASIN	1-Yr Runoff Volume (Ac-ft)	RRv Provided (Ac-ft)	Cp _v Required	Cp _v Provided (Ac-ft)
POND B	1.170	0.499	0.671	1.170
POND C	0.224	0.112	0.112	0.224

TABLE 8: Cpv EXTENDED DETENTION TIMES

FACILITY	Cp _V ED Time (hrs)
POND B	> 24 *
POND C	> 24 *

^{*} These infiltration basins are adequately sized to infiltrate the entire 1 year storm event runoff volume

5.5.2 PEAK RATE CONTROL

The peak discharge rate is controlled utilizing the storage volume available in the stormwater ponds and controlling discharge through an outlet structure releasing the runoff over a greater period of time. The watershed responses to the 1, 10 and 100 year - 24 hour storm events were computed and evaluated at the aforementioned design point. The peak rates of runoff realized at the design points are presented in Table 9. Stormwater computations are attached at the end of this report.

The total peak runoff rates at the design point for the existing condition as well as the final proposed condition have been calculated and shown below in Table 9. The peak runoff rates have been reduced in the proposed conditions during the 1, 10 and 100 year design storms.

TABLE 9: SUMMARY OF RESULTS AT THE DESIGN POINTS

Criteria		DP-A	DP-B	DP-C
	Existing (cfs)	4.29	6.99	5.67
1 – YEAR	Proposed (cfs)	4.18	0.00	1.27
(Cp _v)	Reduction (cfs)	-0.11	-6.99	-4.40
	Reduction (%)	-2.6%	-100%	-77.6%
	Existing (cfs)	14.26	22.55	17.64
10 – YEAR	Proposed (cfs)	14.01	4.30	3.47
(Q _p)	Reduction (cfs)	-0.25	-18.25	-14.17
	Reduction (%)	-1.8%	-80.9%	-80.3%
	Existing (cfs)	34.45	53.62	41.12
100 – YEAR	Proposed (cfs)	33.86	28.29	32.18
(Q _f)	Reduction (cfs)	-0.59	-25.33	-8.94
	Reduction (%)	-1.7%	-47.2%	-21.7%

Post construction stormwater peak runoff rates have been proven to decrease in comparison to the pre-development conditions for all storm events, therefore the proposed development is in accordance with the requirements of the NYSDEC Stormwater Design Manual.

5.6 STORMWATER RUNOFF AND NATURAL RESOURCE MANAGEMENT

The implemented SWPPP for Suresky and Sons will also incorporate the following water and natural resource management objectives.

- a. Prevent increases in flooding and flood damage through the reduction of the rate of runoff from the total drainage basin.
- b. Reduce the erosion potential from the development through the reduction of the rate of runoff from the project site and through the implementation of the soil and erosion control measures outlined on the project plans and as highlighted herein.
- c. Decreases non-point source pollution and water quality degradation through the use of multiple "green technologies" including vegetated open swales, tree plantings, and roof top connections.

6.0 EROSION AND SEDIMENT CONTROL MEASURES

Soil erosion and sediment control measures have been detailed in specifics on the design and summarized herein. The following are general measures that should be implemented:

- a. Damage to surface waters resulting from erosion and sedimentation shall be minimized by stabilizing disturbed areas and by removing sediment from construction site discharge.
- b. Following the completion of construction activities in any portion of the site, permanent vegetation shall be re-established on all exposed soils within 14 days. Also, in areas where construction will temporarily cease for 21 days or more, the site shall be stabilized within 7 days of the last construction activity. After completion of final rough grading, topsoil shall be spread to a depth of 6 inches or more and tested for nutrient and soil composition. The topsoil shall be amended as necessary to encourage successful growth of proposed vegetation.
- c. Site preparation activities shall be planned to minimize the area and duration of soil disturbance. The plans approved for construction contains a detailed "Erosion Control Plan" which depicts the limits of grading along with the required earth cut and fill locations (including stockpile locations if necessary). In addition, any additional site specific erosion control measures required are shown on the approved plans for construction. The proposed project site construction will require the disturbance of +/-9.7 acres. There are extensive cuts and fills required to achieve proposed finish grade, therefore a waiver will be requested from the MS4 allowing the applicant to disturb more than the 5 acres as allowed by the current NYSDEC Stormwater Design Manual. The following additional requirements shall be met upon receipt of such waiver:
 - The required site inspections by the qualified inspector shall occur two (2) times every seven (7) days.
 - In areas where disturbance has temporarily or permanently ceased, stabilization shall be implemented within seven (7) days from the ceasing of soil disturbance activity.

d. Permanent traffic corridors shall be established and "routes of convenience" shall be avoided. Offsite sediment tracking shall be minimized through regularly scheduled sweeping and good housekeeping of construction vehicles.

- e. A qualified professional shall inspect and log the erosion and sediment control measures once every seven days once earth disturbance has commenced and continue until the site has achieved final stabilization. During times of possible inactivity (i.e. winter months), upon the site being temporarily stabilized, the professional shall perform inspections monthly. The professional shall make recommendations to the operator on how to maintain the integrity and function of all temporary erosion control measures throughout the duration of the development process. Any deficiencies in the measures shall be corrected as soon as possible by the operator.
- f. An up to date Construction Site Log Book which includes this SWPPP for Suresky & Sons shall be maintained on site at all times during construction. The Construction Site Log Book shall also include the items found in the most recent version of the New York Standards and Specifications for Erosion and Sediment Control.

In particular, the following erosion and sediment control measures will be implemented:

- a. Pre-Construction Installation: Prior to any disturbance on site, silt fence shall be installed in accordance with the approved plans in the area of disturbance. A stabilized construction entrance shall be established as shown on the Erosion Control Plans. Siltation barriers shall be maintained in good condition and reinforced, extended, repaired or replaced as necessary.
- b. Temporary Sediment Basins: Temporary sediment basins shall be constructed as shown on the plans to intercept sediment filled runoff prior to discharge from the disturbed area into existing storm drainage systems or other natural features. Each sediment basin shall be sized appropriately in accordance with the NYS Standards and Specifications for Erosion and Sediment Control. The proposed contributory drainage area to the proposed sediment basin has been

calculated and the proposed size of the sediment basin is shown in Appendix 9.

- c. Stone Check Dams: Until such time as final site stabilization is completed, only temporary swales/ditches shall receive treatment with stone check dams so as to effectively trap sediment and minimize its release off-site. Stone check dams shall be constructed within each ditch beginning at its downstream terminus and should be placed at intervals of less than 250 feet.
- d. In no case shall erodible materials be stockpiled within 25 feet of any ditch, stream or other surface water body.
- e. Permanent vegetative cover: Immediately following the completion of construction activity in any portion of the site, permanent vegetation shall be established on all exposed soils by properly seeding at a coverage rate as noted on the approved plans and covered with straw. Water shall be applied to newly seeded areas as needed until grass cover is well established.
- f. Washouts shall be immediately repaired, reseeded and protected from further erosion. All accumulated sediment shall be removed and contained in appropriate spoil areas. To effectively control wind erosion, water shall be applied to all exposed soils as necessary.

7.0 LONG TERM MAINTENANCE OF WATER QUALITY FACILITIES

Upon completion of the project, the stormwater facilities shall be maintained by the owner. The project owner shall be responsible to ensure that the facilities operate and function as designed through proper maintenance as follows.

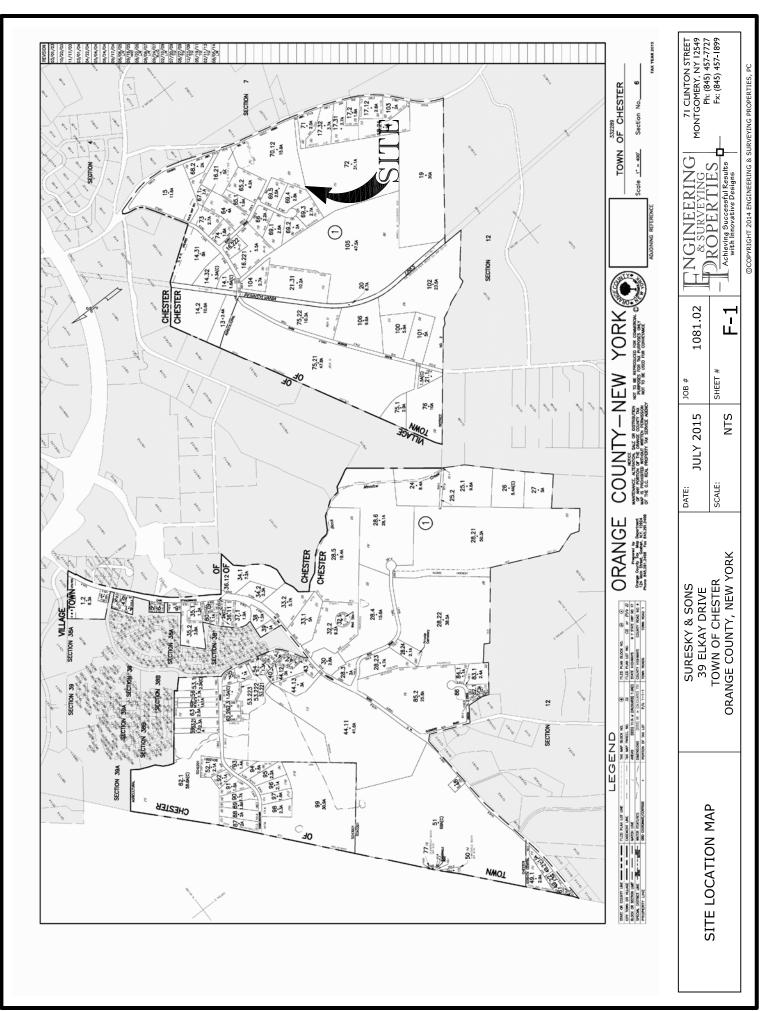
- a. Regular inspection and maintenance of the proposed facilities is required to ensure its long term water quality and quantity reduction functions. Maintenance requirements for the facilities are as follows:
 - i. The pretreatment ponds of each facility shall have accumulated sediment removed every five to six years or when the accumulation level has reached 50% of the pond's capacity. The 50% level will be measured and indicated by the permanent sediment marker installed in each pond.

ii. All outlet structures shall be inspected annually for debris and operability.

Any deficiencies shall be repaired or removed immediately.

- iii. The side slopes of the facilities shall be mowed at a minimum of twice a year.
- iv. Street sweeping shall be performed annually or when conditions require cleaning.
- b. A removable trash rack to be provided on the outlet structure top.

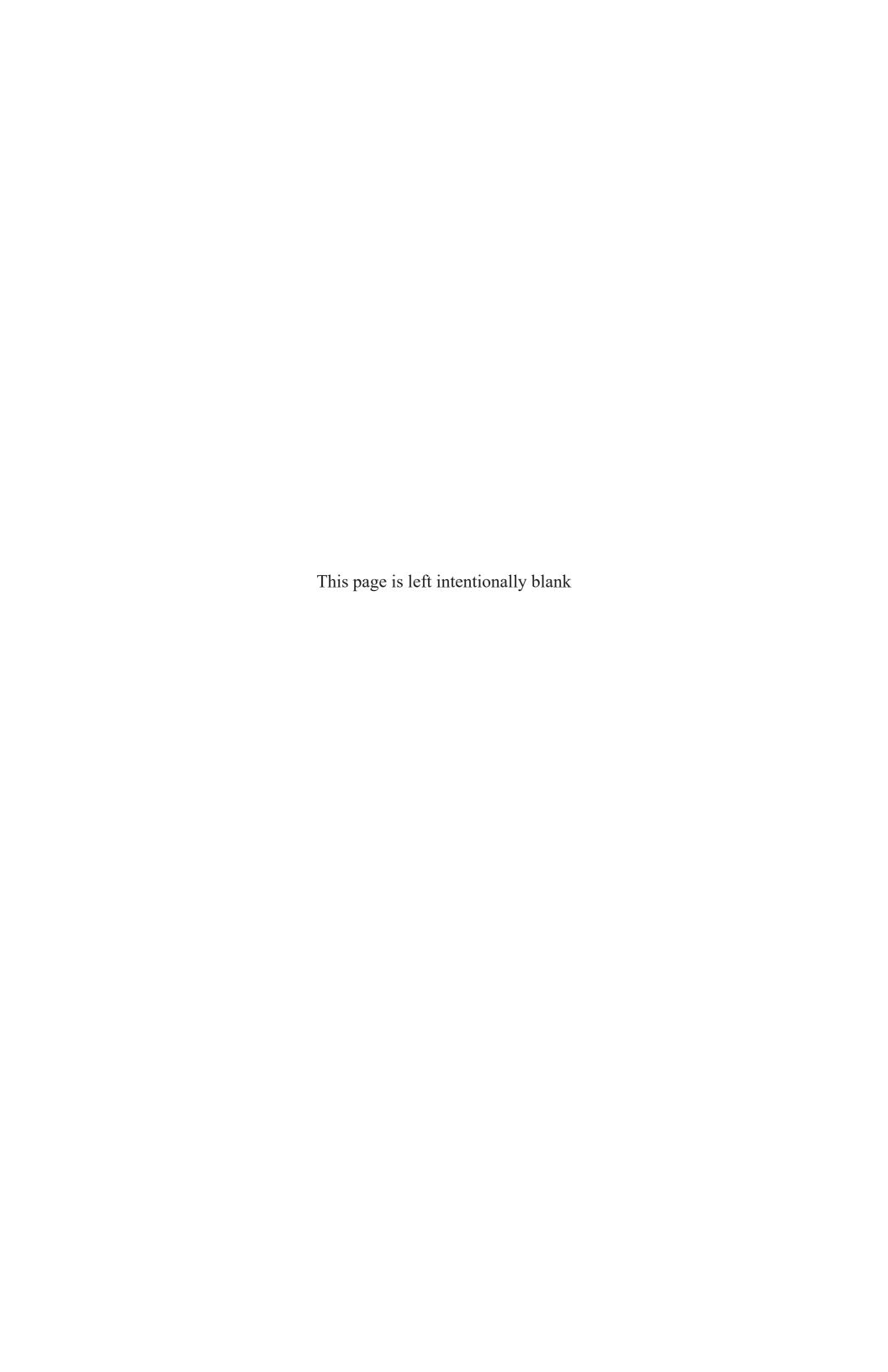
8.0 SUMMARY OF FINDINGS AND CONCLUSIONS

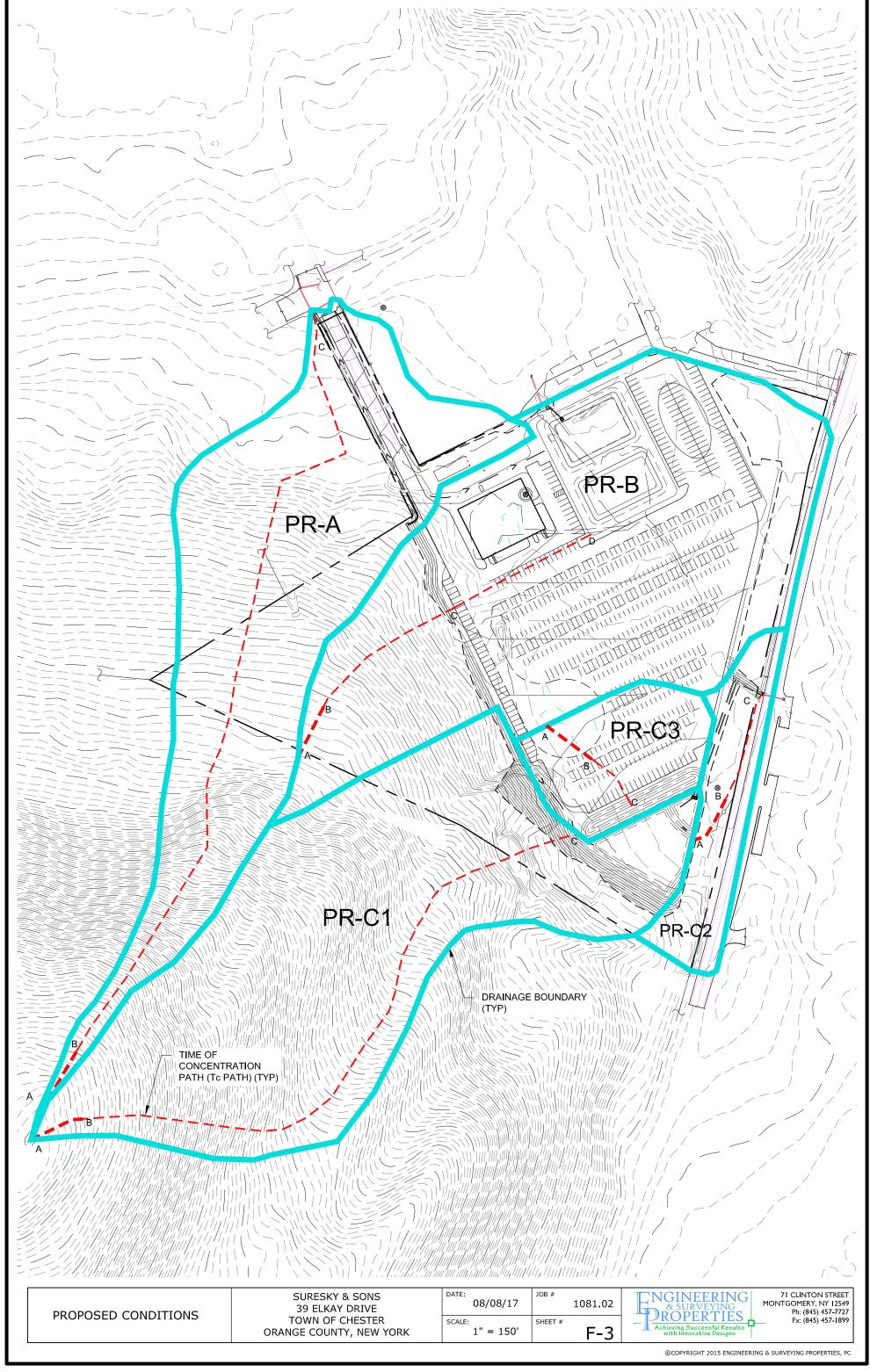

This SWPPP has been designed in accordance with criteria as set forth in the New York State Stormwater Management Design Manual. Post-development peak discharge rates will be reduced below pre-development peak discharge rates or their impacts minimized. Sediment and erosion control measures are designed to minimize erosion loss and downstream sediment deposits.

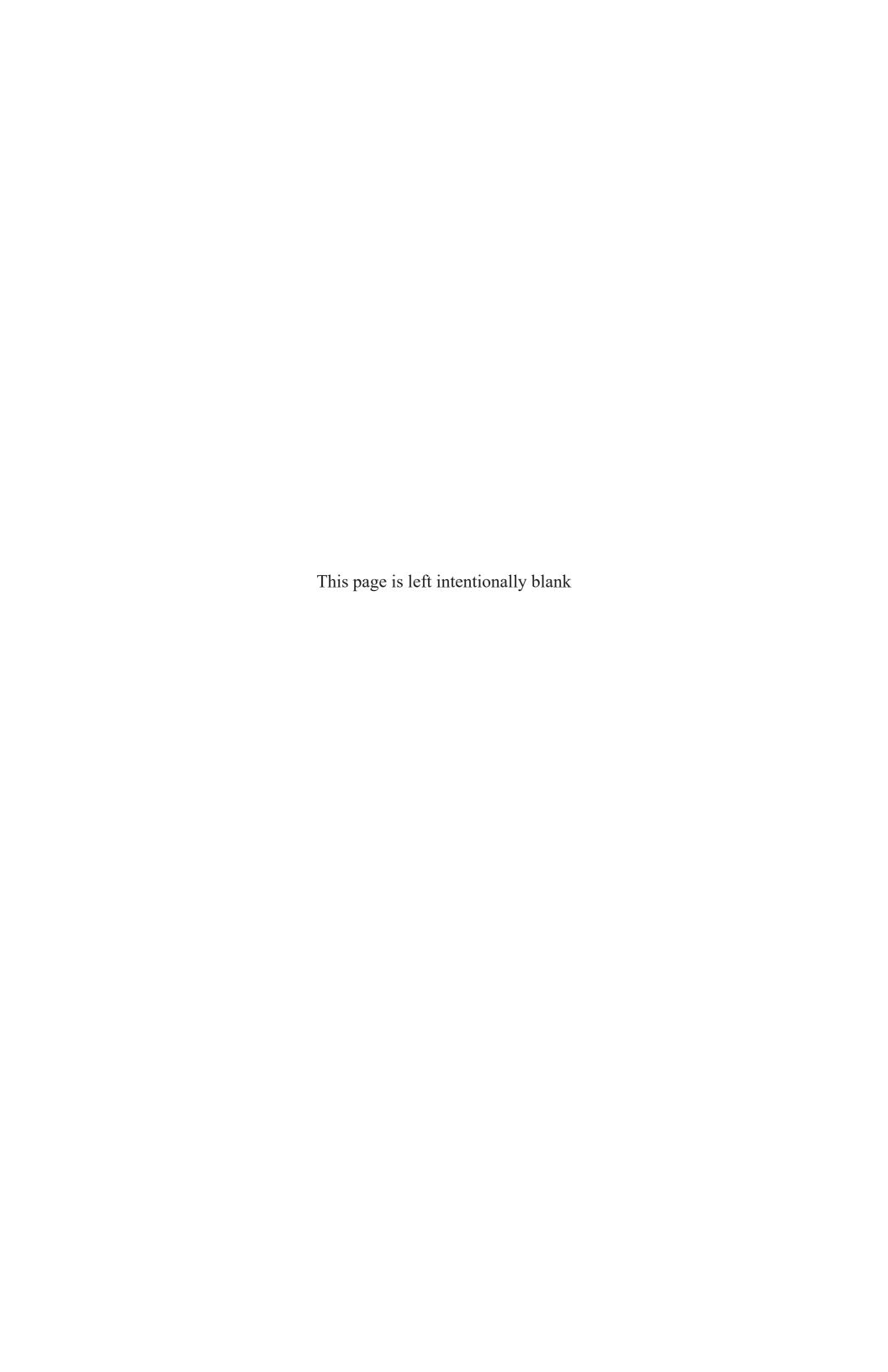
This SWPPP has been prepared by a professional engineer and is conformance with all the requirements set forth by the NYSDEC GP-0-15-002 and is eligible for coverage under GP-0-15-002 5 days after upon filing of the Notice of Intent.

APPENDIX 1 FIGURES

EXISTING CONDITIONS

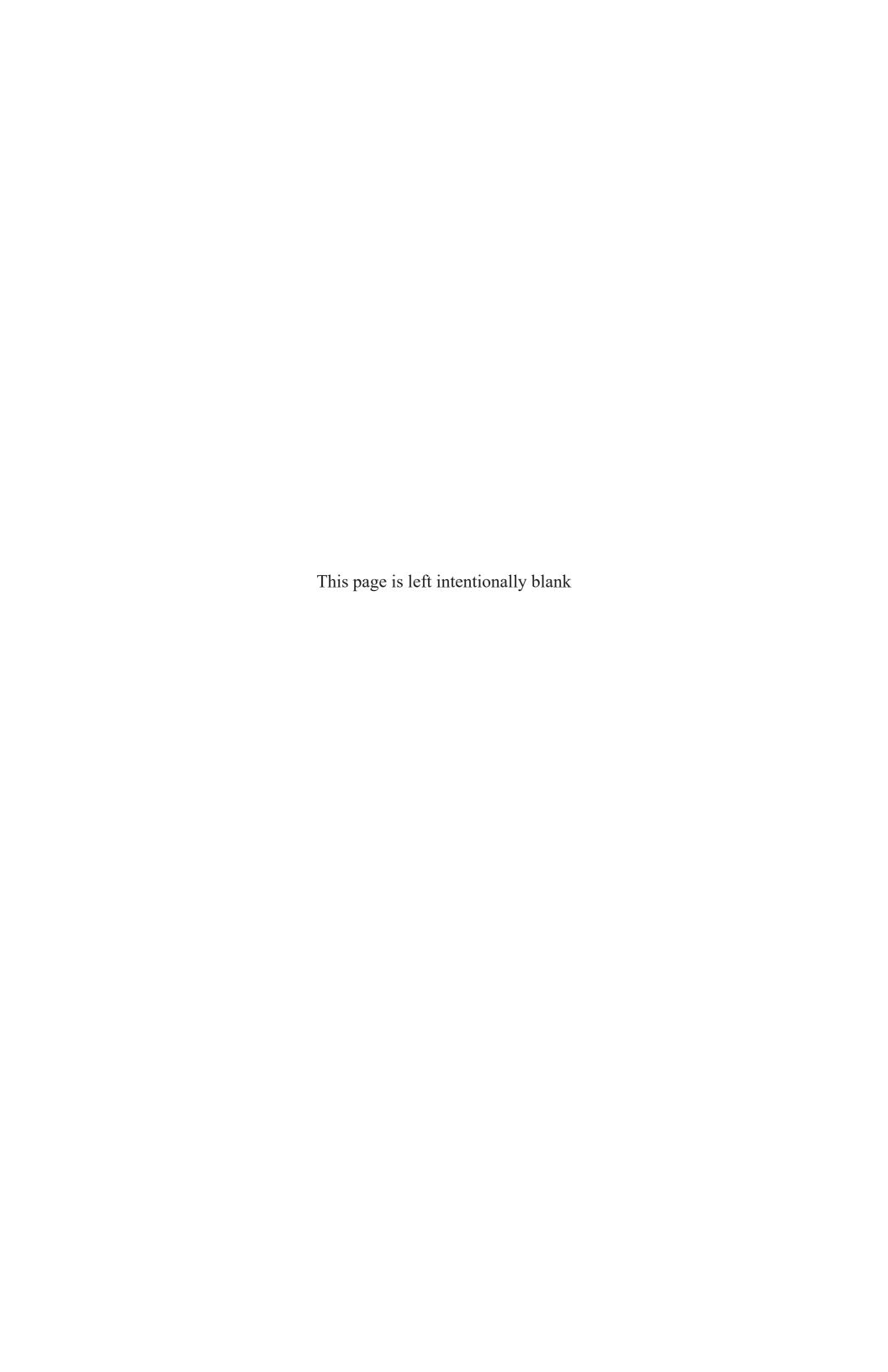

SURESKY & SONS 39 ELKAY DRIVE TOWN OF CHESTER ORANGE COUNTY, NEW YORK DATE: JULY 2015 JOB # 1081.02


SCALE: 1" = 150' SHEET # F-2


ROPERTIES
Achieving Successful Results with Innovative Designs

71 CLINTON STREET MONTGOMERY, NY 12549 Ph: (845) 457-7727 Fx: (845) 457-1899

©COPYRIGHT 2015 ENGINEERING & SURVEYING PROPERTIES, PC



GREEN INFRASTRUCTURE

SURESKY & SONS 39 ELKAY DRIVE TOWN OF CHESTER ORANGE COUNTY, NEW YORK

 SURVEYING **NON
PROPERTIES
Achieving Successful Results with Innovative Designs**

71 CLINTON STREET MONTGOMERY, NY 12549 Ph: (845) 457-7727 Fx: (845) 457-1899

APPENDIX 2 SOILS MAP AND CLASSIFICATIONS

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

A Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Spoil Area

Stony Spot

Nery Stony Spot

Wet Spot
Other

Special Line Features

Water Features

Streams and Canals

Transportation

→ Rails

Interstate Highways

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15,800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Orange County, New York Survey Area Data: Version 15, Sep 17, 2014

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Mar 20, 2011—Oct 10, 2011

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Orange County, New York (NY071)				
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
ErA	Erie gravelly silt loam, 0 to 3 percent slopes	0.1	0.4%	
HoC	Hoosic gravelly sandy loam, 8 to 15 percent slopes	1.6	5.4%	
Ма	Madalin silt loam	1.9	6.3%	
MdC	Mardin gravelly silt loam, 8 to 15 percent slopes	3.7	12.7%	
Pg	Pits, gravel	11.7	39.8%	
Ra	Raynham silt loam	0.6	2.1%	
RSF	Rock outcrop-Nassau complex, very steep	9.8	33.4%	
Totals for Area of Interest	·	29.5	100.0%	

APPENDIX 3 CURVE NUMBER CALCULATIONS

ENGINEE & SURVEY			NUMBE ORKSHE	` '		
Achieving Successivith Innovative I	ful Results Designs	WO. NO. 1081.02	DATE July '15	REVISED 08/08/17	SHEET 1	OF 8
PROJECT TITLE Suresky & Sons CALCULATED BY	APPROVED BY	LOCATION Town of Cl	nester			
KW	JS		(-)			
1. Runoff curve numb	oer (CN)	Existing	Proposed	Subarea:	EX	-A
Soil Name &	Cover Description	ditions)	CN	Area	Produ CN x	
Hydrologic Group	(cover type, treatment & cond	ditions)	00	(acres)	CNX	
	Impervious		98	1.05		102.90
A	Lawn - good		39	0.11		4.29
A	Lawn - good		80	0.11		20.80
D	Lawii - good		00	0.20		20.00
A	Brush - good		30	0.48		14.40
D	Brush - good		73	3.38		246.74
	3.1.1		-			-
D	Woods - good		77	2.36		181.72
			TOTAL =	7.64	570	.85
CN (weig	ghted) = total product	- =	570.85			
,	total area		7.64			
CN (weig	ghted) = 74.719	Use CN=	75			
2. Runoff					S =	3.33
Z. INUIIOII	Storm #1 Storm #2	Storm #3	1		3=	J.JJ
Frequency	yr Storm #1 Storm #2	3:01111 #3				
Rainfall, P	in					
Runoff, Q	inind CN with table 2-1, fig 2-1, or eqns	2-3 and 2-4	\			
(USE P an	id Giv with table 2-1, lig 2-1, or eqris	. 2-3 aliu 2-4	,			

						
TONGINEE	RING		CURVE	NUMBE	R (CN)	
ENGINEE & SURVEY PROPER	ZING TIEC		WC	ORKSHE	ΕT	
Achieving Success with Innovative	ful Results	WO. NO. 1081.02	DATE July '15	REVISED 08/08/17	SHEET 2	OF 8
PROJECT TITLE		LOCATION				
Suresky & Sons		Town of Ch				
CALCULATED BY KW	APPROVED BY JS	REF DRAW	/ING(S)			
1. Runoff curve num	ber (CN)	Existing	Proposed	Subarea:	ЕХ	(-В
O d'I Marina 9	Cover Description			Area	Prod	uct of
Soil Name & Hydrologic Group	(cover type, treatment & cond	ditions)	CN	(acres)		Area
Hydrologic Group	i i	illorio)	- 00	<u> </u>		
	Impervious		98	0.10	<u> </u>	9.80
_	<u> </u>		 	 		
D	Woods - good		77	9.99		769.23
D	Brush - good		73	2.96	<u> </u>	216.08
		-				
	 		 	 	<u> </u>	
	 		 	 	<u> </u>	
	 		 	 	ı———	
	<u> </u>					
			<u> </u>			
					<u> </u>	
					<u> </u> _	
			TOTAL =	13.05	995	5.11
		•				
CN (weig	ghted) = total product	_ =	995.11			
•	total area		13.05			
CNI (vvai	70.054	U ON	70			
Civ (weig	ghted) = 76.254	Use CN=	76			
2. Runoff			_		S =	3.16
	Storm #1 Storm #2	Storm #3	1			
Frequency	yr		1			
Rainfall, P	in		4			
Runoff, Q (Use Plan	in nd CN with table 2-1, fig 2-1, or eqns	· 2-3 and 2-4	1			
(0361 ai	id ON With table 2-1, hg 2-1, or equa	. 2-3 and 2-4	,			

	1		- CL 1D) /F		- (0)	
LNGINEE	RING			NUMBE	, ,	
ENGINEE & SURVEY PROPER	TIFC			ORKSHE	ET	
Achieving Successivith Innovative	ful Results	WO. NO. 1081.02	DATE July '15	REVISED 08/08/17	SHEET 3	OF 8
PROJECT TITLE	•	LOCATION	ĺ			
Suresky & Sons	T 01/ED D1/	Town of Ch				
CALCULATED BY KW	APPROVED BY JS	REF DRAW	/ING(S)			
1. Runoff curve numb	ber (CN)	Existing	Proposed	Subarea: _	ЕХ	K-C
0 11 Norma 0	Cover Description			Area	Prod	uct of
Soil Name & Hydrologic Group	(cover type, treatment & cond	ditions)	CN	(acres)		Area
Hydrologic Group	, , ,	JIIIO 13)	00	· /		
	Impervious		98	0.30		29.40
	Weeks mand				ı——	- 10.01
D	Woods - good		77	7.13	 	549.01
_			 	 	 	
D	Brush - good	!	73	1.34		97.82
		!			 	
					 	
						
						
						
					<u> </u>	
					<u> </u>	
			TOTAL =	8.77	676	5.23
	tatal araduat		270.00			
CN (wei	ghted) = total product	– = ·	676.23	ı		
	total area		8.77			
CN (wei	ghted) = 77.107	Use CN=	77			
	,	-				
2 Dunass					S _	2.00
2. Runoff	01 #4 Ctorm #0	7 24 42	1		S =	2.99
Frequency	yr Storm #1 Storm #2	Storm #3	1			
Rainfall, P	in	 _ 				
Runoff, Q	in		1			
(Use P ar	nd CN with table 2-1, fig 2-1, or eqns	. 2-3 and 2-4)			

		1						
ENGINEE & SURVEY	RING	CURVE NUMBER (CN)						
ROPER	TIES			DRKSHE				
Achieving Success	ful Results Designs	WO. NO. 1081.02	DATE July '15	REVISED 08/08/17	SHEET 4	OF 8		
PROJECT TITLE	'	LOCATION		00/00/11	· ·			
Suresky & Sons CALCULATED BY	APPROVED BY	REF DRAW						
KW	JS	KEF DRAW	ring(3)					
				1				
1. Runoff curve numb	oer (CN)	Existing	Proposed	Subarea:	PF	R-A		
Soil Name &	Cover Description		211	Area	Prod	uct of		
Hydrologic Group	(cover type, treatment & cond	ditions)	CN	(acres)	CN x	Area		
, ,	Impervious	·	98	1.13		110.74		
А	Lawn - good		39	0.13		5.07		
D	Lawn - good		80	0.50		40.00		
<u>A</u>	Brush - good		30	0.42		12.60		
D	Brush - good		73	2.97		216.81		
D	Woods - good		77	2.36		181.72		
	ÿ							
			TOTAL =	7.51	566	6.94		
			TOTAL =	7.01		7.0 1		
CN (weig	total product		566.94					
ON (Weig	total area	_	7.51					
CN (weig	ghted) = 75.491	Use CN=	75					
2. Runoff					S =	3.33		
	Storm #1 Storm #2	Storm #3			-			
Frequency	yr							
Rainfall, P Runoff, Q	in in							
	nd CN with table 2-1, fig 2-1, or eqns	. 2-3 and 2-4)					

CNGINEE	RING	CURVE NUMBER (CN)							
ROPER'	TING		WC	RKSHE	ET				
Achieving Successf		WO. NO.	DATE	REVISED	SHEET	OF			
with Innovative I	Designs	1081.02	July '15	08/08/17	5	8			
PROJECT TITLE		LOCATION							
Suresky & Sons CALCULATED BY	APPROVED BY	Town of CI REF DRAW							
KW	JS	INCI DIXAM	/ IIVG(3)						
		•							
1. Runoff curve numb	per (CN)	Existing	Proposed	Subarea:	Subarea: PR-E				
				•					
Soil Name &	Cover Description		011	Area	Produ	uct of			
Hydrologic Group	(cover type, treatment & cond	itions)	CN	(acres)	CN x	Area			
, a. o.og.o o.oup	Impervious	98	4.73		463.54				
	porvioue		00	0		100.01			
D	Lawn - good		80	1.92		153.60			
<u> </u>	Lawii - good		00	1.32		100.00			
D	Brush - good		73	1.21		88.33			
D	Brusii - good		73	1.21		00.33			
D	Woods good		77	1.91		1.17.07			
U	Woods - good		77	1.91		147.07			
				0.77	0.50	- F 4			
			TOTAL =	9.77	852	.54			
CN (weig	ghted) = total product	- =	852.54						
,	total area		9.77						
CN (weig	ghted) = 87.261	Use CN=	87						
- (- (,,								
2. Runoff		1	1		S =	1.49			
_	Storm #1 Storm #2	Storm #3							
Frequency Rainfall, P	yr in								
Rainiali, P Runoff, Q	in in								
	nd CN with table 2-1, fig 2-1, or eqns.	2-3 and 2-4)						

TONGINEE	RING		CURVE	NUMBE	R (CN)	
ENGINEE & SURVEY PROPER	TIFC			ORKSHE	, ,	
Achieving Success with Innovative	ful Results	WO. NO. 1081.02	DATE July '15	REVISED 08/08/17	SHEET 6	OF 8
PROJECT TITLE		LOCATION		00/00/		
Suresky & Sons		Town of Ch	hester			
CALCULATED BY KW	APPROVED BY JS	REF DRAW	/ING(S)			
1. Runoff curve num	ber (CN)	Existing	Proposed	Subarea:	PR-	-C1
	Cover Description	1		Area	Produ	ict of
Soil Name &			CN		CN x	
Hydrologic Group	(cover type, treatment & cond	litions)	 	(acres)	CIN A	Area
D	Lawn - good		80	0.67		53.60
<u></u>	Prich good		70	0.26		26.28
D	Brush - good		73	0.36		26.28
	 					_
D	Woods - good		77	8.31		639.87
	+					
	 		 	 		
			l			
			TOTAL =	9.34	719).75
		Ī	10	0.0		
CN (wei	ghted) = total product	_ =	719.75	•		
· , ,	total area		9.34			
 , .		*				
CN (weig	ghted) = 77.061	Use CN=	77			
					_	
2. Runoff		<u> </u>	•		S =	2.99
	Storm #1 Storm #2	Storm #3				
Frequency	yr					
Rainfall, P	in		ļ			
Runoff, Q	in CN with table 0.4 fin 0.4 cm area	2 2 1 0 4	Į			
(Use P ar	nd CN with table 2-1, fig 2-1, or eqns.	. 2-3 and 2-4)			

TONCINEEL		CURVE NUMBER (CN)							
ROPER TO ROPER	MING ING	WORKSHEET							
Achieving Successf	ul Results	WO. NO.	DATE	REVISED	SHEET	OF			
PROJECT TITLE	- Congress	1081.02 LOCATION	July '15	08/08/17	7	8			
Suresky & Sons	4.DDD 01/5D D1/	Town of Ch							
	APPROVED BY JS	REF DRAW	ING(S)						
1. Runoff curve numb	er (CN)	Existing	Proposed	Subarea: _	PR-	C2			
Soil Name &	Cover Description		CN	Area	Produ	ıct of			
Hydrologic Group	(cover type, treatment & cond	CIN	(acres)	CN x	Area				
	Impervious		98	0.30		29.40			
D	Lawn - good		80	0.09		7.20			
D	Brush - good		73	0.41		29.93			
D	Woods - good		77	0.55		42.35			
			TOTAL =	1.35	108	.88			
CN (weig	hted) = total product total area	- =	108.88 1.35						
CN (weig	hted) = 80.652	Use CN=	81						
2. Runoff	Ctorres #4 Ctorres #0	Ctores #0	1		S =	2.35			
Frequency Rainfall, P Runoff, Q (Use P and	yr in in d CN with table 2-1, fig 2-1, or eqns.	Storm #3 2-3 and 2-4							

ENGINEE & SURVEY DROPER	RING	CURVE NUMBER (CN) WORKSHEET							
Achievina Successi	ful Results	WO. NO.	DATE	REVISED	SHEET	OF			
PROJECT TITLE	Designs	1081.02 LOCATION	July '15	08/08/17	8	8			
Suresky & Sons		Town of Ch							
CALCULATED BY KW	APPROVED BY JS	REF DRAW							
1. Runoff curve numb	oer (CN)	Existing	Proposed	Subarea:	PR	-C1			
Soil Name &	Cover Description		CN	Area	Produ	uct of			
Hydrologic Group	(cover type, treatment & cond	litions)	CIN	(acres)	CN x	Area			
	Impervious		98	1.11		108.78			
	·								
D	Lawn - good		80	0.38		30.40			
			TOTAL =	1.49	139	.18			
CN (weiç	ghted) = total product total area	- =	139.18 1.49						
CN (weig	ghted) = 93.409	Use CN=	93						
Frequency Rainfall, P Runoff, Q (Use P an	Storm #1 Storm #2 yr in in in d CN with table 2-1, fig 2-1, or eqns.	Storm #3 2-3 and 2-4)		S =	0.75			

APPENDIX 4 TIME OF CONCENTRATION CALCULATIONS

TONCINEEDING		TIN			ITD A TI)NI
ENGINEERING & SURVEYING		TIME OF CONCENTRATION (Tc) WORKSHEET				
**************************************		WO NO I	· /			0.5
Achieving Successful Results with Innovative Designs		WO. NO. 1081.02	DATE July '15	REVISED 08/08/17	SHEET 1	OF 8
PROJECT TITLE		LOCATION		00/00/11	•	
Suresky & Sons		Town of Cl				
CALCULATED BY KW JS		REF DRAW	/ING(S)			
NW J5						
		_				
	Existing	Proposed	Area:		EX-A	
						,
1. Sheet Flow	Segment	A - B				
	ID	, J				
Surface Description (table 3-1)		Woods: D				
Manning's roughness coeff., 'n' (table 3-1)		0.80				
Flow length, L (total L ≤ 300 ft)	ft	100				
Two-year 24-hour rainfall, P ₂	in	3.50				
Land Slope, s	ft/ft	0.160				
$T_t = \frac{0.007 (nL)^{0.8}}{P_0^{0.5} s^{0.4}}$	hr	0.259				0.259
$P_{2}^{0.5} s^{0.4}$						
		1		1		
2. Shallow Concentrated Flow	Segment	B-C				
	ID					
Surface description (paved or unpaved)		Unpaved				,
Flow length, L	ft	1,490.0				,
Watercourse slope, s	ft/ft	0.220				
Average velocity, V (figure 3-1)	ft/s	7.568				
$T_t = \frac{L}{T_t}$	hr	0.055				0.055
3600 V						
2. Ohannal Flann	Commont					ľ
3. <u>Channel Flow</u>	Segment ID					
Cross sectional flow area, a	ft ²					u.
Wetted perimeter, p _w	ft					
Hydraulic radius, $r = a/p_w$	ft					
Channel slope, s	ft/ft					
Manning's roughness coefficient, n	1010					·
$V = \frac{1.49 r^{2/3} s^{1/2}}{1.49 r^{2/3} s^{1/2}}$,
V =	ft/s					
Flow Length, L	ft					1
_						
$T_{t} = \frac{L}{3600 \text{ V}}$	hr					
Total Tc For Watershed or Subarea (Add Steps 6, 11, and 19) hr =						0.31
. o.a o. o. matoronou o	3,541,00	. , 010	p- 0,	, 10)	–	
					min =	18.60

ENGINEERING & SURVEYING PROPERTIES		TIN		CONCEN VORKSI		NC
Achieving Successful Results with Innovative Designs		WO. NO. 1081.02	DATE July '15	REVISED 08/08/17	SHEET 2	OF 8
PROJECT TITLE		LOCATION		00/00/17		0
Suresky & Sons		Town of Cl				
CALCULATED BY APPROVED BY KW JS		REF DRAW	/ING(S)			
in the second se	Existing	Proposed	Area:		ЕХ-В	
1. Sheet Flow	Segment ID	A - B				
Surface Description (table 3-1)		Woods: D				'
Manning's roughness coeff., 'n' (table 3-1)		0.80				'
Flow length, L (total L ≤ 300 ft)	ft	100				`
Two-year 24-hour rainfall, P ₂	in	3.50				
Land Slope, s	ft/ft	0.080				
$T_{t} = \frac{0.007 (nL)^{0.8}}{P_{2}^{0.5} s^{0.4}}$	hr	0.342				0.342
2. Shallow Concentrated Flow	Segment ID	B - C				
Surface description (paved or unpaved)		Unpaved				ı
Flow length, L	ft	1,417.0				
Watercourse slope, s	ft/ft	0.220				
Average velocity, V (figure 3-1)	ft/s	7.568				
$T_{t} = \frac{L}{3600 \text{ V}}$	hr	0.052				0.052
3. <u>Channel Flow</u>	Segment ID	C - D				
Cross sectional flow area, a	ft ²	1.77				
Wetted perimeter, p _w	ft	4.71				
Hydraulic radius, $r = a/p_w$	ft	0.38				
Channel slope, s	ft/ft	0.008				i
Manning's roughness coefficient, n		0.025				
$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$	ft/s	2.776				
Flow Length, L	ft	362.0				
$T_{t} = \frac{L}{3600 \text{ V}}$	hr	0.036				0.036
Tatal To FootMates 1	O l	/A-1-1-0:				0.40
Total Tc For Watershed o	r Subarea	(Add Ste	ps 6, 11,	and 19)	hr =	0.43
					min =	25.80

ENGINEERING & SURVEYING		TIN		CONCEN		NC
PROPERTIES 1		WO. NO.	DATE	REVISED		OF
Achieving Successful Results with Innovative Designs		1081.02	July '15		3	8
PROJECT TITLE		LOCATION			-	
Suresky & Sons		Town of Cl				
CALCULATED BY KW APPROVED BY JS		REF DRAW	/ING(S)			
KW JS						
	Existing	Proposed	Area:		EX-C	
1. Sheet Flow	Segment ID	A - B				
Surface Description (table 3-1)		Woods: D				'
Manning's roughness coeff., 'n' (table 3-1)		0.80				•
Flow length, L (total L ≤ 300 ft)	ft	100				ı
Two-year 24-hour rainfall, P ₂	in	3.50				<u> </u>
Land Slope, s	ft/ft	0.150				ı
$T_{t} = \frac{0.007 (nL)^{0.8}}{P_{c}^{0.5} s^{0.4}}$	hr	0.266				0.266
$P_2 \cap S$						
2. Shallow Concentrated Flow	Segment ID	B - C				
Surface description (paved or unpaved)		Unpaved				
Flow length, L	ft	1,621.0				
Watercourse slope, s	ft/ft	0.188				
Average velocity, V (figure 3-1)	ft/s	6.996				
$T_t = \frac{L}{3600 \text{ V}}$	hr	0.064				0.064
O Channel Flam	Commont	ı				Ī
3. <u>Channel Flow</u>	Segment ID					
Cross sectional flow area, a	ft ²					,
Wetted perimeter, p _w	ft					
Hydraulic radius, r = a/p _w	ft					,
Channel slope, s	ft/ft					,
Manning's roughness coefficient, n	11/11					•
$V = \frac{1.49 r^{2/3} s^{1/2}}{1.49 r^{2/3} s^{1/2}}$	ft/s					
n Flow Length, L	ft					
	11					
$T_t = \frac{L}{3600 \text{ V}}$	hr					
					ſ	
Total Tc For Watershed o	r Subarea	(Add Ste	ps 6, 11	, and 19)	hr =	0.33
					min =	19.80

ENGINEERING & SURVEYING		TIM		CONCEN WORKSI		NC
<u>"NOPERTIES L</u>		WO. NO.	DATE	REVISED		OF
Achieving Successful Results with Innovative Designs		1081.02	July '15		4	8
PROJECT TITLE		LOCATION				
Suresky & Sons		Town of Ch				
CALCULATED BY KW APPROVED BY JS		REF DRAW	ING(S)			
	Existing	Proposed	Area:		PR-A	
1. Sheet Flow	Segment ID	A - B				
Surface Description (table 3-1)		Woods: D				
Manning's roughness coeff., 'n' (table 3-1)		0.80				1
Flow length, L (total L ≤ 300 ft)	ft	100				1
Two-year 24-hour rainfall, P ₂	in	3.50				1
Land Slope, s	ft/ft	0.160				
$T_{t} = \frac{0.007 (nL)^{0.8}}{P_{2}^{0.5} s^{0.4}}$	hr	0.259				0.259
2		<u> </u>				
2. Shallow Concentrated Flow	Segment ID	B - C				
Surface description (paved or unpaved)		Unpaved				
Flow length, L	ft	1,490.0				
Watercourse slope, s	ft/ft	0.220				
Average velocity, V (figure 3-1)	ft/s	7.568				1
$T_t = \frac{L}{3600 \text{ V}}$	hr	0.055				0.055
2. Channel Flour	Segment	Ι				Ī
3. <u>Channel Flow</u>	ID					
Cross sectional flow area, a	ft ²					,
Wetted perimeter, p _w	ft					
Hydraulic radius, r = a/p _w	ft					•
Channel slope, s	ft/ft					'
Manning's roughness coefficient, n						ı
$V = \frac{1.49 r^{2/3} s^{1/2}}{1.49 r^{2/3} s^{1/2}}$	e. (ı
V =	ft/s					
Flow Length, L	ft					i
$T_{t} = \frac{L}{3600 \text{ V}}$	hr					
3600 V						
Total Tc For Watershed or	· Subarea	(Add Ste	ps 6, 11	, and 19)	hr =	0.31
					min =	18.60

ENGINEERING SURVEYING		TIM		CONCEN WORKSI		NC
ROPERTIES		WO. NO.	DATE	REVISED		OF
Achieving Successful Results with Innovative Designs		1081.02	July '15		5	8
PROJECT TITLE		LOCATION	_			
Suresky & Sons		Town of Ch				
CALCULATED BY APPROVED BY KW JS		REF DRAW	/ING(S)			
	Existing	Proposed	Area:		PR-B	
1. Sheet Flow	Segment ID	A - B				
Surface Description (table 3-1)		Woods: D				
Manning's roughness coeff., 'n' (table 3-1)		0.80				
Flow length, L (total L ≤ 300 ft)	ft	100				
Two-year 24-hour rainfall, P ₂	in	3.50				
Land Slope, s	ft/ft	0.120				
$T_{t} = \frac{0.007 (nL)^{0.8}}{P_{2}^{0.5} s^{0.4}}$	hr	0.291				0.291
2. Shallow Concentrated Flow	Segment ID	B - C	C - D			
Surface description (paved or unpaved)		Unpaved	Paved			'
Flow length, L	ft	297.0	275.9			'
Watercourse slope, s	ft/ft	0.224	0.013			
Average velocity, V (figure 3-1)	ft/s	7.636	2.318			
$T_{t} = \frac{L}{3600 \text{ V}}$	hr	0.011	0.033			0.044
3. Channel Flow	Segment					
	ĬD					
Cross sectional flow area, a	ft ²					'
Wetted perimeter, pw	ft					'
Hydraulic radius, $r = a/p_w$	ft					
Channel slope, s	ft/ft					
Manning's roughness coefficient, n						i
$V = \frac{1.49 r^{2/3} s^{1/2}}{1.49 r^{2/3} s^{1/2}}$	ft/s					
n	100					
Flow Length, L	ft					
$T_{t} = \frac{L}{3600 \text{ V}}$	hr					
Total Tc For Watershed or	r Subarea	(Add Ste	ps 6, 11	, and 19)	hr =	0.33
					min =	19.80

ENGINEERING & SURVEYING PROPERTIES		TIM		CONCEN VORKSI		NC
Achieving Successful Results with Innovative Designs		WO. NO. 1081.02	DATE July '15	REVISED 08/08/17	SHEET 6	OF 8
PROJECT TITLE		LOCATION		00/00/17		0
Suresky & Sons		Town of Ch				
CALCULATED BY APPROVED BY JS		REF DRAW	/ING(S)			
	Existing	Proposed	Area:		PR-C1	
1. Sheet Flow	Segment ID	A - B				
Surface Description (table 3-1)		Woods: D				
Manning's roughness coeff., 'n' (table 3-1)		0.80				
Flow length, L (total L ≤ 300 ft)	ft	100				
Two-year 24-hour rainfall, P ₂	in	3.50				
Land Slope, s	ft/ft	0.090				
$T_{t} = \frac{0.007 (nL)^{0.8}}{P_{2}^{0.5} s^{0.4}}$	hr	0.326				0.326
2. Shallow Concentrated Flow	Segment ID	B - C				
Surface description (paved or unpaved)		Unpaved				,
Flow length, L	ft	1,253.6				1
Watercourse slope, s	ft/ft	0.241				
Average velocity, V (figure 3-1)	ft/s	7.921				
$T_t = \frac{L}{3600 \text{ V}}$	hr	0.044				0.044
3. <u>Channel Flow</u>	Segment ID					
Cross sectional flow area, a	ft ²					·
Wetted perimeter, pw	ft					1
Hydraulic radius, $r = a/p_w$	ft					
Channel slope, s	ft/ft					
Manning's roughness coefficient, n $V = \frac{1.49 r^{2/3} s^{1/2}}{n}$	ft/s					
Flow Length, L	ft					
$T_t = \frac{L}{3600 \text{ V}}$	hr					
0000 V		<u> </u>				
Total Tc For Watershed or	· Subarea	(Add Ste	ps 6, 11	, and 19)	hr =	0.37
					min =	22.20

ENGINEERING & SURVEYING PROPERTIES		TIM		CONCEN VORKSI		NC
Achieving Successful Results with Innovative Designs		WO. NO. 1081.02	DATE July '15	REVISED 08/08/17	SHEET 7	OF 8
PROJECT TITLE		LOCATION		00/00/17	,	0
Suresky & Sons		Town of Ch				
CALCULATED BY KW APPROVED BY JS		REF DRAW	/ING(S)			
	Existing	Proposed	Area:		PR-C2	
1. Sheet Flow	Segment ID	A - B				
Surface Description (table 3-1)		Grass: D				
Manning's roughness coeff., 'n' (table 3-1)		0.24				
Flow length, L (total L ≤ 300 ft)	ft	100				
Two-year 24-hour rainfall, P ₂	in	3.50				,
Land Slope, s	ft/ft	0.020				
$T_{t} = \frac{0.007 (nL)^{0.8}}{P_{2}^{0.5} s^{0.4}}$	hr	0.227				0.227
2. Shallow Concentrated Flow	Segment ID	B - C				
Surface description (paved or unpaved)		Unpaved				
Flow length, L	ft	200.0				
Watercourse slope, s	ft/ft	0.020				,
Average velocity, V (figure 3-1)	ft/s	2.282				
$T_{t} = \frac{L}{3600 \text{ V}}$	hr	0.024				0.024
3. Channel Flow	Segment ID					
Cross sectional flow area, a	ft ²					1
Wetted perimeter, p _w	ft					'
Hydraulic radius, r = a/p _w	ft					1
Channel slope, s	ft/ft					•
Manning's roughness coefficient, n						1
$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$	ft/s					
Flow Length, L	ft					
$T_{t} = \frac{L}{3600 \text{ V}}$	hr					
3000 V						
Total Tc For Watershed or	Subarea	(Add Ste	ps 6, 11,	, and 19)	hr =	0.25
					min =	15.00

ENGINEERING & SURVEYING PROPERTIES		TIM		NCENTRATION ORKSHEET	N
Achieving Successful Results with Innovative Designs		WO. NO. 1081.02		EVISED SHEET 8/08/17 8	OF 8
PROJECT TITLE		LOCATION		0,00,11	
Suresky & Sons		Town of Ch			
CALCULATED BY APPROVED BY JS		REF DRAW	ING(S)		
	Existing	Proposed	Area:	PR-C3	
1. Sheet Flow	Segment ID	A - B			
Surface Description (table 3-1)		Paved			
Manning's roughness coeff., 'n' (table 3-1)		0.01			
Flow length, L (total L ≤ 300 ft)	ft	100			
Two-year 24-hour rainfall, P ₂	in	3.50			
Land Slope, s	ft/ft	0.020			
$T_{t} = \frac{0.007 (nL)^{0.8}}{P_{2}^{0.5} s^{0.4}}$	hr	0.019			0.019
2. Shallow Concentrated Flow	Segment ID	B - C			
Surface description (paved or unpaved)		Paved			
Flow length, L	ft	112.3			
Watercourse slope, s	ft/ft	0.050			
Average velocity, V (figure 3-1)	ft/s	4.546			
$T_{t} = \frac{L}{3600 \text{ V}}$	hr	0.007			0.007
3. <u>Channel Flow</u>	Segment ID				
Cross sectional flow area, a	ft ²				
Wetted perimeter, p _w	ft				
Hydraulic radius, $r = a/p_w$	ft				
Channel slope, s	ft/ft				
Manning's roughness coefficient, n $V = \frac{1.49 r^{2/3} s^{1/2}}{n}$	ft/s				
Flow Length, L	ft				
$T_{t} = \frac{L}{3600 \text{ V}}$	hr				
		L	I		
Total Tc For Watershed o	r Subarea	(Add Ste	ps 6, 11, a	nd 19) hr =	0.03
				min =	1.80

APPENDIX 5 WATER QUALITY VOLUME & RUNOFF REDUCTION VOLUME CALCULATIONS

	NEERIN	G		WAT	ER QUA	LITY VC)LUME (WQ_{v})		
P & SU	URVEYING Dedtie	2			CALCU	LATION	SHEET			
	FERTIES Successful Result			WO. NO.	DATE	REVISED	SHEET	OF		
	novative Designs			1081.02 JULY '15 08/08/17 1 2						
PROJECT TITLI				LOCATION						
Suresky & Sons CALCULATED B		APPROVED BY	,	Stormwater		ent Design F	Point Design	ation		
KW		JS		PR-B	Managome	one Doolgin	omit Boolgii	allori		
		WC	$Q_v = (P * R_v)$,*A)/(12)						
		must i	use min valı	ue of 0.2 for	Rv					
			90%	Total	Total	R_v	WQ_v	WQv		
	Drainage Area		Rainfall Event #	Drainage	Imperviou	(0.05 +	Required	Required		
			(P)	Area (A)	s Area (\boldsymbol{I})	0.009*1%)	(Ac-ft)	(ft ³)		
	PR-B		1.40	9.77	4.73	0.486	0.554	24,132.2		
HSG	Area (Ac.)	%	S			/ = (P * 0.9		· ·		
А	0.00	0%	0.55	P =	1.40	•	, ,	,		
В	0.00	0%	0.40	S =	0.20					
С	0.00	0%	0.30	I =	4.73					
D	9.77	100%	0.20	RR _{v MIN}	0.105	Ac-ft				
			Implem	ented ?	Drainage	Contributing	Total	Total		
G	reen Technolog	ıy			Area	Drainage Area	Drainage Area	Impervious Area		
			Yes	No	Reduction	Reduction	Reduction	Reduction		
Area Reduction	Practices									
Conservation	of Natural Areas			>	-	-	ı	-		
Sheet Flow to	Riparian Buffers	or Filter Strips		>	-	-	-	-		
Tree Planting /	Tree Box			~	-	-	-	-		
				Subtotals			0.00	0.00		
Revised W	/Q _v after Area D	eductions	Р	Α	I	R_{v}	WQ_{v}	$RR_{v AREA}$		
			1.40	9.77	4.73	0.486	0.554	0.000		
Disconnection of	f Rooftop Runoff			vious Area R	leduction:	0.00 Acres				
Revised WQ _v	after Imperviou	s Disconnect	Р	Α	I	R_{v}	WQ _√	$RR_{v IMP}$		
			1.40	9.77	4.73	0.486	0.554	0.000		
	NQ _v Treatment I	Practices	Yes	No	WQ_{v}	RR _{vsc} *	(A) Reduction	(I) Reduction		
Vegetated Ope	en Swales			>	-	-	-	-		
Rain Garden				<u> </u>	-	-	-	-		
Green Roof	0.040.00			<u> </u>	-	-	-	-		
Stormwater Planks / C				<u> </u>	-	-	-	-		
Porous Pavem				2	-	-	-	-		
	with RRv Capac	sits (V	-	-	-	-		
Infiltration	with KKV Capac	ліу	~	П	0.554	0.498	9.77	4.73		
Bio-Retention				~	0.554	0.430	5.11	4.73		
Dry Swale (Op	en Channel)			~		-				
Dry Gwale (Op	on onamer)			Subtotals	0.554	0.498	9.77	4.73		
Is The Total R	RR _v (RR _{v Area} + F	RR _{v IMP} + RR _{v SC})	0.499		v _{MIN} ?	0.105	YE			
			Р	A	I	R _v	WQ _v (Ac-ft)	WQ _v (ft ³)		
WQ _v Requi	red by Standard	d Practices	1.40	0.00	0.00	0.00	0.000	0.0		
* For Source Control	l (if used) RRv calcul	ations see attached (

			1				
ENGINEER	RING		RUNC	OFF REDU			(RRv)
PROPERT	TIES		WO NO		LATION		05
Achieving Successfu with Innovative D			WO. NO. 1081.02		REVISED 8/8/2017	SHEET 2	OF 2
PROJECT TITLE	-		LOCATIO	N.			
Suresky & Sons CALCULATED BY	APPROVED B	Y	Stormwate	:hester er Managemer	nt Design Po	int Designat	ion
KW	JS	•	PR-B	. managemen		200.g.lac	
		INFILTRATIO	ON PRAC	TICES			
Requirement CI	necks	Yes	<u>No</u>	Notes:			
Infiltration rate $(k) \ge 0.5$ "	hr	✓					
Pretreatment provided		√					
Design Complies with Re Elements of Practice	equired	/					
Infiltration designed to exbottom of practice only?	✓						
Drainage Area (Ac.)	9.77						
Impervious Area (Ac.)	4.73						
Rainfall Event # (P)	1.40						
Rv	0.486						
WQv _{REQ'D}	0.554						
A_t (ft ²)		Surface area o	of infiltration	trench			
d_t (ft)		depth of trench	า				
n	0.400	porosity					
V_t (ft ³)		Design Volume	e of Trench	(WQ _v Provide	d)		
$V_t > WQV_{REQ'D}$							
A _b (ft ²)	8,283.0	Surface area o	of infiltration	basin			
D _b (ft)	3.0	depth of basin					
V_b (ft ³)	24,849.0	Design Volume	e of basin (V	VQ _v Provided))		
V _b (ac-ft)	0.570	Design Volume	e of basin (V	VQ _v Provided))		
$V_t > WQV_{REQ'D}$	YES						
RRv	0.498]					
		_					

TONGII	NEERIN	G		WAT	ER QUA	LITY VC	LUME (NQ_{v})		
& ST	URVEYING DEDTIE					LATION	•	-,		
Achieving	PEKTIE: Successful Result	ts		WO. NO.	DATE	REVISED	SHEET	OF		
	novative Designs			1081.02	JULY '15	08/08/17	1	2		
PROJECT TITLI Suresky & Sons				LOCATION Town of Chester						
CALCULATED E		APPROVED BY				ent Design F	oint Design	ation		
KW		JS		PR-C						
			• •	,*A)/(12)	•					
		must t		ue of 0.2 for	Rv					
			90% Rainfall	Total	Total	R_{v}	WQ_v	WQv		
	Drainage Area		Event #	Drainage	Imperviou	(0.05 +	Required	Required		
			(P)	Area (A)	s Area (I)	0.009*1%)	(Ac-ft)	(ft ³)		
	PR-C		1.40	1.49	1.11	0.720	0.125	5,445.0		
HSG	Area (Ac.)	%	S	Mi	nimum RR\	/ = (P * 0.9	5 * S * I) / (*	12)		
Α	0.00	0%	0.55	P =	1.40					
В	0.00	0%	0.40	S =	0.20					
С	0.00	0%	0.30	I =	1.11	•				
D	1.49	100%	0.20	RR _{v MIN}	0.025	Ac-ft				
			Implem	ented ?	Drainage	Contributing Drainage	Total Drainage	Total Impervious		
G	reen Technolog	ду	Vaa	Na	Area Reduction	Area	Area	Area		
			Yes	No	Reduction	Reduction	Reduction	Reduction		
Area Reduction				T	,					
	of Natural Areas			V	-	-	-	-		
	Riparian Buffers	or Filter Strips		V	-	-	-	-		
Tree Planting /	Tree Box			V	-	-	-	-		
		1		Subtotals			0.00	0.00		
Revised W	/Q _v after Area D	eductions	Р	Α	l	R _v	WQ _v	RR _{v AREA}		
Diagonation	f Daaftan Donaf	t .	1.40	1.49	1.11	0.720	0.125	0.000		
Disconnection of	ROOMOD RUNOT		•	ious Area R	I	0.00	Acres	DD.		
Revised WQ_{ν}	after Imperviou	ıs Disconnect	P 1 40	A 40	1 11	R _v	WQ _v	RR _{v IMP}		
Source Control \	NO Treatment	Dractices	1.40	1.49	1.11 WQ _v	0.720	0.125	0.000 (I) Reduction		
Vegetated Ope	·	Fractices	Yes	No 🔽	vvQ _∨	RR _{v sc} *	(A) Reduction	(I) Reduction		
Rain Garden	eri Swales			V	-	-		-		
Green Roof				V	_	-				
Stormwater Pla	anters			V	-	-		-		
Rain Tanks / C				V	-	_	_	_		
Porous Pavem				V	-	_	_	-		
Standard SMP's		citv		12						
Infiltration			~	П	0.125	0.113	1.49	1.11		
Bio-Retention				~	-	-	-	-		
Dry Swale (Op	en Channel)			<u>~</u>	-	-	-	-		
, ,	,			Subtotals	0.125	0.113	1.49	1.11		
Is The Total R	RR _v (RR _{v AREA} + I	RR _{vIMP} + RR _{vSC})	0.112		_{v MIN} ?	0.025	YE			
	red by Standar		Р	Α	I	R_{v}	WQ _v (Ac-ft)	WQ _v (ft ³)		
www. Kequi		u Flaclices	1.40	0.00	0.00	0.00	0.000	0.0		
* For Source Control	l (if used) RRv calcu	lations see attached (Green Technol	logy RRv Calcu	llation Sheets	-				

			_				
ENGINEER			RUNG	OFF REDU	JCTION \	/OLUME	(RRv)
ROPERT	TIES				LATION		
Achieving Successfu with Innovative Do	Il Results esigns		WO. NO. 1081.02	DATE JULY '15	REVISED 8/8/2017	SHEET 2	OF 2
PROJECT TITLE			LOCATIO	N	0/0/2017		
Suresky & Sons CALCULATED BY	APPROVED B	v	Town of C	Chester er Managemer	nt Dosign Po	int Decignati	on
KW	JS	1	PR-C	er iviariagemen	it Design Fo	int Designati	OH
		INFILTRATIO	N PRAC	TICES			
Requirement Ch	necks	<u>Yes</u>	<u>No</u>	Notes:			
Infiltration rate $(k) \ge 0.5$ "	hr	V					
Pretreatment provided		\checkmark					
Design Complies with Re Elements of Practice	equired	✓					
Infiltration designed to exbottom of practice only?	filtrate through	✓					
Drainage Area (Ac.)	1.49						
Impervious Area (Ac.)	1.11						
Rainfall Event # (P)	1.40						
Rv	0.720						
WQv _{REQ'D}	0.125						
$A_t (ft^2)$		Surface area o	f infiltration	trench			
d _t (ft)		depth of trench	1				
n	0.400	porosity					
V_t (ft ³)		Design Volume	e of Trench	(WQ _v Provide	d)		
$V_t > WQV_{REQ'D}$							
A _b (ft ²)	11,721.0	Surface area o	f infiltration	basin			
D _b (ft)	1.5	depth of basin					
V _b (ft ³)	17,581.5	Design Volume	e of basin (V	VQ _v Provided)			
V _b (ac-ft)	0.404	Design Volume	e of basin (V	VQ _v Provided)			
$V_t > WQV_{REQ'D}$	YES						
RRv	0.113]					

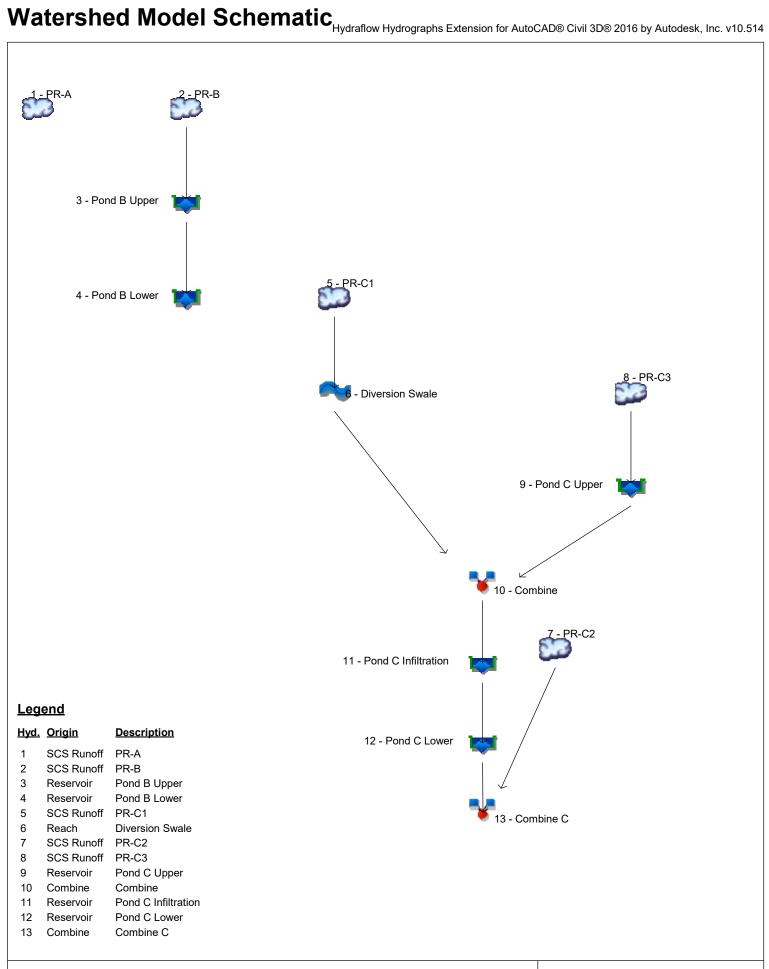
APPENDIX 6 HYDROGRAPH SUMMARIES & DIAGRAMS

Watershed Model Schematic

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

LI-EX.A QUEXES QUEXES				·
		1 - EX-A	2 - EX-B	3 - EX-C
Project: Existing Conditions.gpw Tuesday, 07 / 21 / 2015	Project: E	Existing Conditions.gpw		Tuesday, 07 / 21 / 2015

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Hyd. No.	Hydrograph	Inflow	Peak Outflow (cfs)						Hydrograph		
lo.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff		4.248				14.26			34.45	EX-A
2	SCS Runoff		6.993				22.55			53.62	EX-B
3	SCS Runoff		5.671				17.64			41.12	EX-C

Proj. file: Existing Conditions.gpw

Tuesday, 07 / 21 / 2015

Project: Proposed Conditions - 08-08-17.gpw

Tuesday, 08 / 15 / 2017

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Hydrograph type	Inflow hyd(s)		Peak Outflow (cfs)						Hydrograph	
type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
SCS Runoff		4.176				14.01			33.86	PR-A
SCS Runoff		11.56				26.75			53.38	PR-B
Reservoir	2	11.25				26.34			52.81	Pond B Upper
Reservoir	3	0.000				4.303			28.29	Pond B Lower
SCS Runoff		5.649				17.57			40.96	PR-C1
Reach	5	5.602				17.46			40.79	Diversion Swale
SCS Runoff		1.274				3.474			7.564	PR-C2
SCS Runoff		3.502				6.993			12.94	PR-C3
Reservoir	8	3.020				6.264			11.95	Pond C Upper
Combine	6, 9	6.792				19.83			45.18	Combine
Reservoir	10	0.000				2.196			28.76	Pond C Infiltration
Reservoir	11	0.000				1.900			28.70	Pond C Lower
Combine	7, 12	1.274				3.474			32.18	Combine C
	SCS Runoff SCS Runoff Reservoir Reservoir SCS Runoff Reach SCS Runoff SCS Runoff COMbine Reservoir	SCS Runoff SCS Runoff Reservoir 2 Reservoir 3 SCS Runoff Reach 5 SCS Runoff SCS Runoff Reservoir 8 Combine 6, 9 Reservoir 10 Reservoir 11	SCS Runoff 4.176 SCS Runoff 11.56 Reservoir 2 11.25 Reservoir 3 0.000 SCS Runoff 5.649 Reach 5 5.602 SCS Runoff 1.274 SCS Runoff 3.502 Reservoir 8 3.020 Combine 6, 9 6.792 Reservoir 10 0.000 Reservoir 11 0.000	SCS Runoff 4.176 SCS Runoff 11.56 Reservoir 2 11.25 Reservoir 3 0.000 SCS Runoff 5.649 SCS Runoff 1.274 SCS Runoff 3.502 Reservoir 8 3.020 Combine 6, 9 6.792 Reservoir 10 0.000 Reservoir 11 0.000	SCS Runoff 4.176 SCS Runoff 11.56 Reservoir 2 11.25 Reservoir 3 0.000	SCS Runoff 4.176 SCS Runoff 11.56 Reservoir 2 11.25 Reservoir 3 0.000 SCS Runoff 5.649	SCS Runoff 4.176 14.01 SCS Runoff 11.56 26.75 Reservoir 2 11.25 26.34 Reservoir 3 0.000	SCS Runoff 4.176 14.01 SCS Runoff 11.56 26.75 Reservoir 2 11.25 26.34 Reservoir 3 0.000 4.303 SCS Runoff 5.649 17.57 Reach 5 5.602 17.46 SCS Runoff	SCS Runoff	SCS Runoff 4.176 14.01 33.86 SCS Runoff 11.56 26.75 53.38 Reservoir 2 11.25 26.34 52.81 Reservoir 3 0.000 4.303 28.29 SCS Runoff

Proj. file: Proposed Conditions - 08-08-17.gpw

Tuesday, 08 / 15 / 2017

APPENDIX 7 1-YEAR DESIGN STORM HYDROGRAPHS

Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Tuesday, 07 / 21 / 2015

Hyd. No. 1

EX-A

Hydrograph type	= SCS Runoff	Peak discharge	= 4.248 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.27 hrs
Time interval	= 1 min	Hyd. volume	= 20,519 cuft
Drainage area	= 7.640 ac	Curve number	= 75.000
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.6 min
Total precip.	= 2.65 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Discharge Table

(Printed values >= 50.00% of Qp.)

Time ((hrs	Outflow cfs)	Time C (hrs	Outflow cfs)
12.07	2.223	12.37	3.925
12.08	2.476	12.38	3.828
12.10	2.735	12.40	3.719
12.12	2.993	12.42	3.600
12.13	3.244	12.43	3.471
12.15	3.482	12.45	3.333
12.17	3.699	12.47	3.188
12.18	3.887	12.48	3.039
12.20	4.036	12.50	2.890
12.22	4.143	12.52	2.743
12.23	4.210	12.53	2.603
12.25	4.244	12.55	2.472
12.27	4.248	12.57	2.350
12.28	4.229	12.58	2.236
12.30	4.193	12.60	2.129
		F l	
12.32	4.145	End	
12.33	4.084		
12.35	4.010		

Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Tuesday, 07 / 21 / 2015

Hyd. No. 2

EX-B

Hydrograph type	= SCS Runoff	Peak discharge	= 6.993 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.35 hrs
Time interval	= 1 min	Hyd. volume	= 37,575 cuft
Drainage area	= 13.050 ac	Curve number	= 76.000
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 25.8 min
Total precip.	= 2.65 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Discharge Table

(Printed values >= 50.00% of Qp.)

Time ((hrs	Outflow cfs)	Time C (hrs	Outflow cfs)	Time Outflow (hrs cfs)	V
12.10	3.599	12.40	6.911	12.70 3.843	
12.12	3.927	12.42	6.850	12.72 3.646	
12.13	4.258	12.43	6.772	End	
12.15	4.592	12.45	6.677	LIIU	
12.17	4.926	12.47	6.566		
12.18	5.256	12.48	6.439		
12.20	5.577	12.50	6.297		
12.22	5.881	12.52	6.140		
12.23	6.160	12.53	5.969		
12.25	6.404	12.55	5.785		
12.27	6.606	12.57	5.591		
12.28	6.760	12.58	5.386		
12.30	6.871	12.60	5.173		
12.32	6.943	12.62	4.953		
12.33	6.982	12.63	4.727		
12.35	6.993	12.65	4.500		
12.37	6.983	12.67	4.274		
12.38	6.956	12.68	4.054		

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3 $\,$

Tuesday, 07 / 21 / 2015

Hyd. No. 3

EX-C

<<

Hydrograph type	= SCS Runoff	Peak discharge	= 5.671 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.25 hrs
Time interval	= 1 min	Hyd. volume	= 26,614 cuft
Drainage area	= 8.770 ac	Curve number	= 77.000
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.8 min
Total precip.	= 2.65 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Discharge Table

(Printed values >= 50.00% of Qp.)

Time ((hrs	Outflow cfs)	Time ((hrs	Outflow cfs)
12.07	3.138	12.37	5.147
12.08	3.469	12.38	5.008
12.10	3.805	12.40	4.854
12.12	4.138	12.42	4.688
12.13	4.460	12.43	4.509
12.15	4.763	12.45	4.320
12.17	5.036	12.47	4.123
12.18	5.269	12.48	3.923
12.20	5.449	12.50	3.722
12.22	5.572	12.52	3.527
12.23	5.644	12.53	3.342
12.25	5.671	12.55	3.170
12.27	5.660	12.57	3.010
12.28	5.618	12.58	2.861
		. F. a.d.	
12.30	5.556	End	
12.32	5.477		
12.33	5.383		
12.35	5.272		

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	4.176	1	736	20,170				PR-A
2	SCS Runoff	11.56	1	734	50,982				PR-B
3	Reservoir	11.25	1	737	50,982	2	511.19	30,868	Pond B Upper
4	Reservoir	0.000	1	716	0	3	508.66	10,421	Pond B Lower
5	SCS Runoff	5.649	1	738	28,091				PR-C1
6	Reach	5.602	1	740	28,090	5			Diversion Swale
7	SCS Runoff	1.274	1	731	5,149				PR-C2
8	SCS Runoff	3.502	1	722	9,741				PR-C3
9	Reservoir	3.020	1	724	9,740	8	512.61	9,327	Pond C Upper
10	Combine	6.792	1	738	37,830	6, 9			Combine
11	Reservoir	0.000	1	732	0	10	511.40	4,831	Pond C Infiltration
12	Reservoir	0.000	1	n/a	0	11	511.00	0.001	Pond C Lower
13	Combine	1.274	1	731	5,149	7, 12			Combine C
 Pro	posed Condit	tions - 08-	-08-17.aı	ow .	Return F	Period: 1 Ye	ear	Tuesdav. 0	8 / 15 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 1

PR-A

Hydrograph type	= SCS Runoff	Peak discharge	= 4.176 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.27 hrs
Time interval	= 1 min	Hyd. volume	= 20,170 cuft
Drainage area	= 7.510 ac	Curve number	= 75.000
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.6 min
Total precip.	= 2.65 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs	Outflow cfs)
12.18	3.821
12.20	3.967
12.22	4.072
12.23	4.139
12.25	4.171
12.27	4.176
12.28	4.157
12.30	4.122
12.32	4.075
12.33	4.015
12.35	3.942
12.37	3.858
12.38	3.763

<<

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 2

PR-B

= SCS Runoff	Peak discharge	= 11.56 cfs
= 1 yrs	Time to peak	= 12.23 hrs
= 1 min	Hyd. volume	= 50,982 cuft
= 9.770 ac	Curve number	= 87.000
= 0.0 %	Hydraulic length	= 0 ft
= User	Time of conc. (Tc)	= 19.8 min
= 2.65 in	Distribution	= Type III
= 24 hrs	Shape factor	= 484
	= 1 yrs = 1 min = 9.770 ac = 0.0 % = User = 2.65 in	= 1 yrs = 1 min = 9.770 ac = 0.0 % Hydraulic length Time of conc. (Tc) = 2.65 in Time to peak Hyd. volume Curve number Time of conc. (Tc)

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Outflow cfs)
10.83
11.18
11.41
11.54
11.56
11.49
11.35
11.16
10.94
10.68
10.40

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 3

Pond B Upper

Hydrograph type Peak discharge = 11.25 cfs= Reservoir Storm frequency Time to peak $= 12.28 \, hrs$ = 1 yrsTime interval = 1 min Hyd. volume = 50,982 cuft Inflow hyd. No. = 2 - PR-B Reservoir name = Pond B Upper Max. Elevation = 511.19 ftMax. Storage = 30,868 cuft

Storage Indication method used. Wet pond routing start elevation = 511.00 ft.

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	Outflow cfs
12.20	11.41	511.18					10.37					10.37
12.22	11.54	511.19					10.73					10.73
12.23	11.56 <<	511.19					11.00					11.00
12.25	11.49	511.19					11.17					11.17
12.27	11.35	511.19					11.25					11.25
12.28	11.16	511.19 <<					11.25					11.25
12.30	10.94	511.19					11.19					11.19
12.32	10.68	511.19					11.06					11.06
12.33	10.40	511.19					10.89					10.89
12.35	10.10	511.19					10.68					10.68
12.37	9.776	511.18					10.44					10.44
12.38	9.429	511.18					10.17					10.16

...End

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 4

Pond B Lower

Hydrograph type= ReservoirPeak discharge= 0.000 cfsStorm frequency= 1 yrsTime to peak= 11.93 hrsTime interval= 1 minHyd. volume= 0 cuft

Clv A Clv B

Inflow hyd. No. = 3 - Pond B Upper Reservoir name = Pond B Lower Max. Elevation = 508.66 ft Max. Storage = 10,421 cuft

Clv C

PfRsr Wr A

Wr B

Wr C

Wr D

Storage Indication method used. Exfiltration extracted from Outflow.

Elevation

Hydrograph Discharge Table

Inflow

(Printed values >= 90.00% of Qp.)

Outflow

Exfil

11.93 2.933 509.41 << 6.066 11.98 3.827 509.41 << 6.066 13.78 1.286 509.41 << 6.066 14.03 1.168 509.41 << 6.066	0.000	
13.78 1.286 509.41 << 6.066		
	0.000	
14.03	0.000	
	0.000	
14.12 1.129 509.41 << 6.066	0.000	
14.22 1.085 509.41 << 6.066	0.000	

...End

Time

<<

<<

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 5

PR-C1

Hydrograph type	= SCS Runoff	Peak discharge	= 5.649 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.30 hrs
Time interval	= 1 min	Hyd. volume	= 28,091 cuft
Drainage area	= 9.340 ac	Curve number	= 77.000
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.2 min
Total precip.	= 2.65 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs	Outflow cfs)
12.22	5.245
12.23	5.409
12.25	5.528
12.27	5.604
12.28	5.642
12.30	5.649
12.32	5.630
12.33	5.592
12.35	5.539
12.37	5.472
12.38	5.390
12.40	5.294
12.42	5.184

<<

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 6

Diversion Swale

Hydrograph type	= Reach	Peak discharge	= 5.602 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.33 hrs
Time interval	= 1 min	Hyd. volume	= 28,090 cuft
Inflow hyd. No.	= 5 - PR-C1	Section type	= Trapezoidal
Reach length	= 244.0 ft	Channel slope	= 1.00 %
Manning's n	= 0.040	Bottom width	= 4.00 ft
Side slope	= 2.0:1	Max. depth	= 1.00 ft
Rating curve x	= 1.478	Rating curve m	= 1.216
Ave. velocity	= 0.00 ft/s	Routing coeff.	= 0.4382

Modified Att-Kin routing method used.

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Tim (hrs	_	Inflow cfs	Outflow cfs
12.25	5	5.528	5.146
12.27	7	5.604	5.313
12.28	3	5.642	5.440
12.30)	5.649 <<	5.529
12.32	2	5.630	5.581
12.33	3	5.592	5.602
12.35	5	5.539	5.598
12.37	7	5.472	5.572
12.38	3	5.390	5.528
12.40)	5.294	5.467
12.42	2	5.184	5.391
12.43	3	5.060	5.300
12.45	5	4.924	5.195
12.47	7	4.776	5.077

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 7

PR-C2

= SCS Runoff	Peak discharge	= 1.274 cfs
= 1 yrs	Time to peak	= 12.18 hrs
= 1 min	Hyd. volume	= 5,149 cuft
= 1.350 ac	Curve number	= 81.000
= 0.0 %	Hydraulic length	= 0 ft
= User	Time of conc. (Tc)	= 15.0 min
= 2.65 in	Distribution	= Type III
= 24 hrs	Shape factor	= 484
	= 1 yrs = 1 min = 1.350 ac = 0.0 % = User = 2.65 in	= 1 yrs = 1 min Hyd. volume = 1.350 ac = 0.0 % Hydraulic length Time of conc. (Tc) = 2.65 in Time to peak Hyd. volume Curve number Tydraulic length Time of conc. (Tc)

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs	Outflow cfs)
12.12	1.150
12.13	1.209
12.15	1.249
12.17	1.270
12.18	1.274
12.20	1.264
12.22	1.242
12.23	1.212
12.25	1.176

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 8

PR-C3

Hydrograph type	= SCS Runoff	Peak discharge	= 3.502 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.03 hrs
Time interval	= 1 min	Hyd. volume	= 9,741 cuft
Drainage area	= 1.490 ac	Curve number	= 93.000
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 2.0 min
Total precip.	= 2.65 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Outflow cfs)
3.398
3.502
3.344

...End

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 9

Pond C Upper

Hydrograph type Peak discharge = 3.020 cfs= Reservoir Storm frequency Time to peak = 12.07 hrs= 1 yrsTime interval = 1 min Hyd. volume = 9,740 cuftInflow hyd. No. = Pond C Upper Reservoir name = 8 - PR-C3 = 9,327 cuft Max. Elevation $= 512.61 \, \text{ft}$ Max. Storage

Storage Indication method used. Wet pond routing start elevation = 512.50 ft.

Hydrograph Discharge Table

(Printed values \geq 90.00% of Qp.)

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	Outflow cfs
12.05	3.344	512.61					2.940					2.940
12.07	3.024	512.61 <<					3.020					3.020
12.08	2.650	512.61					2.960					2.960
12.10	2.268	512.61					2.796					2.796

...End

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 10

Combine

<<

Hydrograph type = Combine Peak discharge = 6.792 cfsStorm frequency = 1 yrsTime to peak $= 12.30 \, hrs$ = 37,830 cuft Time interval = 1 min Hyd. volume Contrib. drain. area Inflow hyds. = 6, 9= 0.000 ac

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs)	Hyd. 6 + (cfs)	Hyd. 9 = (cfs)	Outflow (cfs)
12.20	4.440	1.709	6.149
12.22	4.702	1.611	6.312
12.23	4.940	1.526	6.466
12.25	5.146	1.451	6.597
12.27	5.313	1.384	6.697
12.28	5.440	1.322	6.762
12.30	5.529	1.264	6.792
12.32	5.581	1.208	6.789
12.33	5.602 <<	1.155	6.757
12.35	5.598	1.103	6.701
12.37	5.572	1.052	6.624
12.38	5.528	1.002	6.530
12.40	5.467	0.952	6.419
12.42	5.391	0.902	6.294
12.43	5.300	0.861	6.161

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 11

Pond C Infiltration

Hydrograph type= ReservoirPeak discharge= 0.000 cfsStorm frequency= 1 yrsTime to peak= 12.20 hrsTime interval= 1 minHyd. volume= 0 cuft

Inflow hyd. No. = 10 - Combine Reservoir name = Pond C Infiltrati

Max. Elevation = 511.40 ft Max. Storage = 4,831 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

Hydrograph Discharge Table

(Printed values \geq 90.00% of Qp.)

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	Outflow cfs
12.20	6.149	512.50 <<									8.063	0.000
13.20	1.349	512.50 <<									8.063	0.000

...End

<<

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 12

Pond C Lower

Hydrograph type = Reservoir Peak discharge = 0.000 cfs Storm frequency = 1 yrs Time to peak = n/a Time interval = 1 min Hyd. volume = 0 cuft

Inflow hyd. No. = 11 - Pond C InfiltratiorReservoir name = Pond C Lower

Max. Elevation = 511.00 ft Max. Storage = 0 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514 $\,$

Tuesday, 08 / 15 / 2017

Hyd. No. 13

Combine C

Hydrograph type	= Combine	Peak discharge	= 1.274 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.18 hrs
Time interval	= 1 min	Hyd. volume	= 5,149 cuft
Inflow hyds.	= 7, 12	Contrib. drain. area	= 1.350 ac

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Hyd. 7 + (cfs)	Hyd. 12 = (cfs)	Outflow (cfs)
1.150	0.000 <<	1.150
1.209	0.000 <<	1.209
1.249	0.000 <<	1.249
1.270	0.000 <<	1.270
1.274 <<	0.000 <<	1.274
1.264	0.000 <<	1.264
1.242	0.000 <<	1.242
1.212	0.000 <<	1.212
1.176	0.000 <<	1.176
	(cfs) 1.150 1.209 1.249 1.270 1.274 << 1.264 1.242 1.212	(cfs) (cfs) 1.150 0.000 <<

...End

APPENDIX 8 10-YEAR DESIGN STORM HYDROGRAPHS

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3 $\,$

Tuesday, 07 / 21 / 2015

Hyd. No. 1

EX-A

Hydrograph type	= SCS Runoff	Peak discharge	= 14.26 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.23 hrs
Time interval	= 1 min	Hyd. volume	= 63,234 cuft
Drainage area	= 7.640 ac	Curve number	= 75.000
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.6 min
Total precip.	= 4.79 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Discharge Table

(Printed values >= 50.00% of Qp.)

Time ((hrs	Outflow cfs)	Time ((hrs	Outflow cfs)
12.03	7.495	12.33	12.99
12.05	8.215	12.35	12.64
12.07	8.969	12.37	12.26
12.08	9.742	12.38	11.84
12.10	10.52	12.40	11.41
12.12	11.27	12.42	10.94
12.13	11.99	12.43	10.46
12.15	12.65	12.45	9.951
12.17	13.22	12.47	9.438
12.18	13.69	12.48	8.925
12.20	14.01	12.50	8.420
12.22	14.20	12.52	7.936
12.23	14.26	12.53	7.485
12.25	14.21	End	
12.27	14.07		
12.28	13.86		
12.30	13.60		
12.32	13.32		

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3 $\,$

Tuesday, 07 / 21 / 2015

Hyd. No. 2

EX-B

= SCS Runoff	Peak discharge	= 22.55 cfs
= 10 yrs	Time to peak	= 12.32 hrs
= 1 min	Hyd. volume	= 112,840 cuft
= 13.050 ac	Curve number	= 76.000
= 0.0 %	Hydraulic length	= 0 ft
= User	Time of conc. (Tc)	= 25.8 min
= 4.79 in	Distribution	= Type III
= 24 hrs	Shape factor	= 484
	= 1 min = 13.050 ac = 0.0 % = User = 4.79 in	= 10 yrs = 1 min Hyd. volume = 13.050 ac = 0.0 % Hydraulic length Time of conc. (Tc) = 4.79 in Time to peak Hyd. volume Curve number Time of conc. (Tc) Distribution

Hydrograph Discharge Table

(Printed values >= 50.00% of Qp.)

Time Outflow (hrs cfs)		Time C (hrs	Outflow cfs)	Time - (hrs	- Outflow cfs)
12.07	11.98	12.37	22.12	12.67	11.99
12.08	12.95	12.38	21.86	12.68	11.31
12.10	13.92	12.40	21.55	End	
12.12	14.90	12.42	21.20	<i>E</i> 110	
12.13	15.87	12.43	20.80		
12.15	16.83	12.45	20.37		
12.17	17.78	12.47	19.89		
12.18	18.70	12.48	19.37		
12.20	19.57	12.50	18.81		
12.22	20.37	12.52	18.22		
12.23	21.08	12.53	17.60		
12.25	21.66	12.55	16.95		
12.27	22.10	12.57	16.28		
12.28	22.38	12.58	15.59		
12.30	22.53	12.60	14.88		
12.32	22.55	12.62	14.15		
12.33	22.48	12.63	13.42		
12.35	22.33	12.65	12.70		
12.00	22.00				

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Tuesday, 07 / 21 / 2015

Hyd. No. 3

EX-C

Hydrograph type	= SCS Runoff	Peak discharge	= 17.64 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.23 hrs
Time interval	= 1 min	Hyd. volume	= 77,942 cuft
Drainage area	= 8.770 ac	Curve number	= 77.000
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.8 min
Total precip.	= 4.79 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Discharge Table

(Printed values >= 50.00% of Qp.)

Time ((hrs	Outflow cfs)	Time ((hrs	Outflow cfs)
12.03	9.482	12.33	15.97
12.05	10.37	12.35	15.52
12.07	11.29	12.37	15.03
12.08	12.23	12.38	14.51
12.10	13.18	12.40	13.96
12.12	14.10	12.42	13.38
12.13	14.97	12.43	12.77
12.15	15.77	12.45	12.14
12.17	16.45	12.47	11.50
12.18	17.00	12.48	10.87
12.20	17.38	12.50	10.24
12.22	17.59	12.52	9.646
12.23	17.64	12.53	9.091
12.25	17.55	End	
12.27	17.36		
12.28	17.09		
12.30	16.76		
12.32	16.38		

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	14.01	1	734	62,158				PR-A
2	SCS Runoff	26.75	1	733	119,515				PR-B
3	Reservoir	26.34	1	735	119,515	2	511.34	32,803	Pond B Upper
4	Reservoir	4.303	1	756	3,937	3	510.69	33,447	Pond B Lower
5	SCS Runoff	17.57	1	736	82,267				PR-C1
6	Reach	17.46	1	738	82,266	5			Diversion Swale
7	SCS Runoff	3.474	1	730	13,724				PR-C2
8	SCS Runoff	6.993	1	722	20,241				PR-C3
9	Reservoir	6.264	1	724	20,241	8	512.69	9,785	Pond C Upper
10	Combine	19.83	1	737	102,507	6, 9			Combine
11	Reservoir	2.196	1	757	2,341	10	512.72	22,985	Pond C Infiltration
12	Reservoir	1.900	1	761	2,330	11	511.76	1,056	Pond C Lower
Dro	posed Condi	tions 09	09.17.0		Poture C	Period: 10 N	(cor	Tuesday 0	08 / 15 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 1

PR-A

= SCS Runoff	Peak discharge	= 14.01 cfs
= 10 yrs	Time to peak	= 12.23 hrs
= 1 min	Hyd. volume	= 62,158 cuft
= 7.510 ac	Curve number	= 75.000
= 0.0 %	Hydraulic length	= 0 ft
= User	Time of conc. (Tc)	= 18.6 min
= 4.79 in	Distribution	= Type III
= 24 hrs	Shape factor	= 484
	= 10 yrs = 1 min = 7.510 ac = 0.0 % = User = 4.79 in	= 10 yrs = 1 min = 7.510 ac = 0.0 % Hydraulic length Time of conc. (Tc) = 4.79 in Time to peak Hydravlic length Time of conc. (Tc) Distribution

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs	Outflow cfs)
12.17	13.00
12.18	13.45
12.20	13.78
12.22	13.96
12.23	14.01
12.25	13.96
12.27	13.83
12.28	13.62
12.30	13.37
12.32	13.09
12.33	12.77

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 2

PR-B

Hydrograph type	= SCS Runoff	Peak discharge	= 26.75 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.22 hrs
Time interval	= 1 min	Hyd. volume	= 119,515 cuft
Drainage area	= 9.770 ac	Curve number	= 87.000
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.8 min
Total precip.	= 4.79 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time ((hrs	Outflow cfs)
12.15	24.58
12.17	25.48
12.18	26.17
12.20	26.59
12.22	26.75
12.23	26.68
12.25	26.41
12.27	26.00
12.28	25.46
12.30	24.85
12.32	24.18

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 3

Pond B Upper

Hydrograph type Peak discharge = 26.34 cfs= Reservoir Storm frequency = 10 yrsTime to peak $= 12.25 \, hrs$ Time interval = 1 min Hyd. volume = 119,515 cuft Inflow hyd. No. Reservoir name = 2 - PR-B = Pond B Upper = 32,803 cuft Max. Elevation = 511.34 ftMax. Storage

Storage Indication method used. Wet pond routing start elevation = 511.00 ft.

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	Outflow cfs
12.18	26.17	511.33					24.36					24.36
12.20	26.59	511.33					25.20					25.20
12.22	26.75 <<	511.34					25.81					25.81
12.23	26.68	511.34					26.19					26.19
12.25	26.41	511.34 <<					26.34					26.34
12.27	26.00	511.34					26.28					26.28
12.28	25.46	511.34					26.05					26.05
12.30	24.85	511.34					25.68					25.68
12.32	24.18	511.33					25.19					25.19
12.33	23.47	511.33					24.62					24.62
12.35	22.70	511.32					23.98					23.98

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 4

Pond B Lower

Hydrograph type = Reservoir Peak discharge = 4.303 cfsStorm frequency = 10 yrsTime to peak $= 12.60 \, hrs$ Time interval = 1 min Hyd. volume = 3,937 cuftInflow hyd. No. = 3 - Pond B Upper Reservoir name = Pond B Lower Max. Elevation = 510.69 ftMax. Storage = 33,447 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

Hydrograph Discharge Table

(Printed values \geq 90.00% of Qp.)

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	Outflow cfs
12.57	13.05	510.68	4.087				4.087				7.419	4.087
12.58	12.37	510.68	4.254				4.253				7.425	4.253
12.60	11.71	510.69 <<	4.304				4.303				7.427	4.303
12.62	11.09	510.68	4.258				4.257				7.425	4.257
12.63	10.50	510.68	4.135				4.135				7.421	4.134
12.65	9.937	510.68	3.951				3.950				7.414	3.950

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 5

PR-C1

Hydrograph type	= SCS Runoff	Peak discharge	= 17.57 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.27 hrs
Time interval	= 1 min	Hyd. volume	= 82,267 cuft
Drainage area	= 9.340 ac	Curve number	= 77.000
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.2 min
Total precip.	= 4.79 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs	Outflow cfs)
12.18	15.86
12.20	16.46
12.22	16.95
12.23	17.29
12.25	17.49
12.27	17.57
12.28	17.53
12.30	17.40
12.32	17.20
12.33	16.95
12.35	16.66
12.37	16.33
12.38	15.97

<<

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 6

Diversion Swale

Hydrograph type	= Reach	Peak discharge	= 17.46 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.30 hrs
Time interval	= 1 min	Hyd. volume	= 82,266 cuft
Inflow hyd. No.	= 5 - PR-C1	Section type	Trapezoidal
Reach length	= 244.0 ft	Channel slope	= 1.00 %
Manning's n	= 0.040	Bottom width	= 4.00 ft
Side slope	= 2.0:1	Max. depth	= 1.00 ft
Rating curve x	= 1.478	Rating curve m	= 1.216
Ave. velocity	= 0.00 ft/s	Routing coeff.	= 0.5112

Modified Att-Kin routing method used.

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs)	Inflow cfs	Outflow cfs
12.22	16.95	15.83
12.23	17.29	16.40
12.25	17.49	16.86
12.27	17.57 <<	17.18
12.28	17.53	17.38
12.30	17.40	17.46
12.32 12.33 12.35 12.37 12.38 12.40	17.20 16.95 16.66 16.33 15.97	17.43 17.31 17.13 16.89 16.61 16.28
12.42	15.14	15.92

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 7

PR-C2

= SCS Runoff	Peak discharge	= 3.474 cfs
= 10 yrs	Time to peak	= 12.17 hrs
= 1 min	Hyd. volume	= 13,724 cuft
= 1.350 ac	Curve number	= 81.000
= 0.0 %	Hydraulic length	= 0 ft
= User	Time of conc. (Tc)	= 15.0 min
= 4.79 in	Distribution	= Type III
= 24 hrs	Shape factor	= 484
	= 10 yrs = 1 min = 1.350 ac = 0.0 % = User = 4.79 in	= 10 yrs = 1 min = 1.350 ac = 0.0 % Hydraulic length Time of conc. (Tc) = 4.79 in Time to peak Hyd. volume Curve number Time of conc. (Tc) Distribution

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time ((hrs	Outflow cfs)
12.12	3.235
12.13	3.365
12.15	3.445
12.17	3.474
12.18	3.458
12.20	3.405
12.22	3.323
12.23	3.219

...End

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 8

PR-C3

Hydrograph type	= SCS Runoff	Peak discharge	= 6.993 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.03 hrs
Time interval	= 1 min	Hyd. volume	= 20,241 cuft
Drainage area	= 1.490 ac	Curve number	= 93.000
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 2.0 min
Total precip.	= 4.79 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs	Outflow cfs)
12.02	6.818
12.03	6.993
12.05	6.648

...End

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 9

Pond C Upper

Hydrograph type Peak discharge = 6.264 cfs= Reservoir Storm frequency Time to peak = 12.07 hrs= 10 yrsTime interval = 1 min Hyd. volume = 20,241 cuft Inflow hyd. No. Reservoir name = 8 - PR-C3 = Pond C Upper Max. Elevation = 512.69 ftMax. Storage = 9,785 cuft

Storage Indication method used. Wet pond routing start elevation = 512.50 ft.

Hydrograph Discharge Table

(Printed values \geq 90.00% of Qp.)

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	Outflow cfs
12.03	6.993 <<	512.68					5.879					5.878
12.05	6.648	512.68					6.231					6.232
12.07	5.988	512.69 <<					6.264					6.264
10.00	5.000	540.00					0.040					0.040
12.08	5.228	512.68					6.019					6.018

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 10

Combine

Hydrograph type = Combine Peak discharge = 19.83 cfsStorm frequency = 10 yrsTime to peak $= 12.28 \, hrs$ Time interval = 1 min Hyd. volume = 102,507 cuftContrib. drain. area Inflow hyds. = 6, 9= 0.000 ac

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs)	Hyd. 6 + (cfs)	Hyd. 9 = (cfs)	Outflow (cfs)
12.20	15.16	3.144	18.31
12.22	15.83	2.964	18.79
12.23	16.40	2.813	19.21
12.25	16.86	2.681	19.54
12.27	17.18	2.562	19.75
12.28	17.38	2.454	19.83
12.30	17.46 <<	2.369	19.83
12.32	17.43	2.282	19.71
12.33	17.31	2.193	19.51
12.35	17.13	2.103	19.23
12.37	16.89	2.012	18.90
12.38	16.61	1.920	18.53
12.40	16.28	1.827	18.11

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 11

Pond C Infiltration

Hydrograph type= ReservoirPeak discharge= 2.196 cfsStorm frequency= 10 yrsTime to peak= 12.62 hrsTime interval= 1 minHyd. volume= 2,341 cuft

Inflow hyd. No. = 10 - Combine Reservoir name = Pond C Infiltrati
Max. Elevation = 512.72 ft Max. Storage = 22,985 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs)	Inflow cfs	Elevation ft	CIv A cfs	Clv B cfs	Clv C cfs	PfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	Outflow cfs
12.57	12.24	512.71					2.048				8.298	2.048
12.58	11.59	512.72					2.138				8.304	2.138
12.60	10.96	512.72					2.186				8.308	2.186
12.62	10.36	512.72 <<					2.195				8.309	2.196
12.63	9.798	512.72					2.171				8.307	2.171
12.65	9.270	512.72					2.118				8.303	2.117
12.67	8.783	512.71					2.037				8.297	2.038

...End

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 12

Pond C Lower

Hydrograph type = Reservoir Peak discharge = 1.900 cfsStorm frequency = 10 yrsTime to peak $= 12.68 \, hrs$ Time interval = 1 min Hyd. volume = 2,330 cuftInflow hyd. No. = Pond C Lower = 11 - Pond C InfiltratiorReservoir name Max. Storage Max. Elevation = 511.76 ft= 1,056 cuft

Storage Indication method used.

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Tim (hrs	-	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	Outflow cfs
12.6	7 2.038	511.76	1.824	0.138				1.684				1.822
12.6	8 1.936	511.76 <<	1.903	0.137				1.763				1.900
12.7	0 1.821	511.76	1.892	0.137				1.752				1.890
12.7	2 1.701	511.76	1.831	0.138				1.691				1.829
12.7	3 1.569	511.75	1.737	0.139				1.598				1.737

...End

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 13

Combine C

<<

Hydrograph type = Combine Peak discharge = 3.474 cfsStorm frequency = 10 yrsTime to peak = 12.17 hrs= 16,054 cuft Time interval = 1 min Hyd. volume Inflow hyds. = 7, 12 Contrib. drain. area = 1.350 ac

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs)	Hyd. 7 + (cfs)	Hyd. 12 = (cfs)	Outflow (cfs)
12.12	3.235	0.000	3.235
12.13	3.365	0.000	3.365
12.15	3.445	0.000	3.445
12.17	3.474 <<	0.000	3.474
12.18	3.458	0.000	3.458
12.20	3.405	0.000	3.405
12.22	3.323	0.000	3.323
12.23	3.219	0.000	3.219

APPENDIX 9 100-YEAR DESIGN STORM HYDROGRAPHS

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Tuesday, 07 / 21 / 2015

Hyd. No. 1

EX-A

Hydrograph type	= SCS Runoff	Peak discharge	= 34.45 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.22 hrs
Time interval	= 1 min	Hyd. volume	= 152,647 cuft
Drainage area	= 7.640 ac	Curve number	= 75.000
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.6 min
Total precip.	= 8.51 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Discharge Table

(Printed values >= 50.00% of Qp.)

Time ((hrs	Outflow cfs)	Time C (hrs	Outflow cfs)
12.02	18.22	12.32	31.38
12.03	19.80	12.33	30.49
12.05	21.48	12.35	29.53
12.07	23.22	12.37	28.50
12.08	24.99	12.38	27.43
12.10	26.74	12.40	26.29
12.12	28.44	12.42	25.12
12.13	30.03	12.43	23.89
12.15	31.46	12.45	22.64
12.17	32.67	12.47	21.38
12.18	33.60	12.48	20.14
12.20	34.19	12.50	18.92
12.22	34.45	12.52	17.77
12.23	34.41	End	
12.25	34.11		
12.27	33.61		
12.28	32.96		
12.30	32.21		

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3 $\,$

Tuesday, 07 / 21 / 2015

Hyd. No. 2

EX-B

Hydrograph type = SCS Runoff Peak discharge :	= 53.62 cfs
Storm frequency = 100 yrs Time to peak :	= 12.30 hrs
Time interval = 1 min Hyd. volume :	= 268,504 cuft
Drainage area = 13.050 ac Curve number :	= 76.000
Basin Slope = 0.0 % Hydraulic length :	= 0 ft
Tc method = User Time of conc. (Tc)	= 25.8 min
Total precip. = 8.51 in Distribution :	Type III
Storm duration = 24 hrs Shape factor :	= 484

Hydrograph Discharge Table

(Printed values >= 50.00% of Qp.)

Time ((hrs	Outflow cfs)	Time C (hrs	Outflow cfs)	Time (hrs	Outflow cfs)
12.05	28.88	12.35	52.51	12.65	28.09
12.07	31.05	12.37	51.81	End	
12.08	33.27	12.38	51.01	End	
12.10	35.49	12.40	50.11		
12.12	37.69	12.42	49.12		
12.13	39.87	12.43	48.03		
12.15	42.01	12.45	46.86		
12.17	44.10	12.47	45.60		
12.18	46.11	12.48	44.26		
12.20	47.99	12.50	42.85		
12.22	49.68	12.52	41.37		
12.23	51.13	12.53	39.83		
12.25	52.28	12.55	38.24		
12.27	53.08	12.57	36.60		
12.28	53.51	12.58	34.93		
12.30	53.62	12.60	33.23		
12.32	53.46	12.62	31.51		
12.33	53.46	12.63	29.78		

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3 $\,$

Tuesday, 07 / 21 / 2015

Hyd. No. 3

EX-C

Hydrograph type	= SCS Runoff	Peak discharge	= 41.12 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.22 hrs
Time interval	= 1 min	Hyd. volume	= 182,866 cuft
Drainage area	= 8.770 ac	Curve number	= 77.000
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.8 min
Total precip.	= 8.51 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Discharge Table

(Printed values >= 50.00% of Qp.)

Time ((hrs	Outflow cfs)	Time C (hrs	Outflow cfs)
12.02	22.03	12.32	37.32
12.03	23.90	12.33	36.23
12.05	25.89	12.35	35.07
12.07	27.95	12.37	33.84
12.08	30.05	12.38	32.54
12.10	32.12	12.40	31.18
12.12	34.13	12.42	29.76
12.13	36.00	12.43	28.30
12.15	37.67	12.45	26.80
12.17	39.09	12.47	25.29
12.18	40.17	12.48	23.80
12.20	40.85	12.50	22.36
12.22	41.12	12.52	20.99
12.23	41.04	End	
12.25	40.66		
12.27	40.05		
12.28	39.25		
12.30	38.33		

ty	ograph ype gin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
scs	Runoff	33.86	1	733	150,050				PR-A
scs	Runoff	53.38	1	733	246,374				PR-B
Rese	ervoir	52.81	1	734	246,374	2	511.55	35,434	Pond B Upper
Rese	ervoir	28.29	1	744	55,885	3	511.86	51,759	Pond B Lower
scs	Runoff	40.96	1	735	193,012				PR-C1
Reac	:h	40.79	1	737	193,012	5			Diversion Swale
scs	Runoff	7.564	1	730	30,505				PR-C2
scs	Runoff	12.94	1	722	38,887				PR-C3
Rese	ervoir	11.95	1	723	38,886	8	512.79	10,423	Pond C Upper
Comb	bine	45.18	1	737	231,898	6, 9			Combine
Rese	ervoir	28.76	1	746	58,427	10	513.74	39,240	Pond C Infiltration
Rese	ervoir	28.70	1	747	58,415	11	513.76	5,707	Pond C Lower
Comb	bine	32.18	1	745	88,920	7, 12			Combine C

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 1

PR-A

Hydrograph type	= SCS Runoff	Peak discharge	= 33.86 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.22 hrs
Time interval	= 1 min	Hyd. volume	= 150,050 cuft
Drainage area	= 7.510 ac	Curve number	= 75.000
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.6 min
Total precip.	= 8.51 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs	Outflow cfs)
12.15	30.92
12.17	32.11
12.18	33.03
12.20	33.61
12.22	33.86
12.23	33.82
12.25	33.53
12.27	33.04
12.28	32.40
12.30	31.66
12.32	30.85

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 2

PR-B

= SCS Runoff	Peak discharge	= 53.38 cfs
= 100 yrs	Time to peak	= 12.22 hrs
= 1 min	Hyd. volume	= 246,374 cuft
= 9.770 ac	Curve number	= 87.000
= 0.0 %	Hydraulic length	= 0 ft
= User	Time of conc. (Tc)	= 19.8 min
= 8.51 in	Distribution	= Type III
= 24 hrs	Shape factor	= 484
	= 100 yrs = 1 min = 9.770 ac = 0.0 % = User = 8.51 in	= 100 yrs = 1 min = 9.770 ac = 0.0 % Hyd. volume Curve number Hydraulic length Time of conc. (Tc) = 8.51 in Distribution

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs	Outflow cfs)
12.15	49.58
12.17	51.25
12.18	52.48
12.20	53.19
12.22	53.38
12.23	53.11
12.25	52.47
12.27	51.53
12.28	50.37
12.30	49.06

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 3

Pond B Upper

Hydrograph type Peak discharge = 52.81 cfs= Reservoir Storm frequency = 100 yrsTime to peak $= 12.23 \, hrs$ Time interval = 1 min Hyd. volume = 246,374 cuft = 2 - PR-B Inflow hyd. No. Reservoir name = Pond B Upper Max. Elevation = 511.55 ftMax. Storage = 35,434 cuft

Storage Indication method used. Wet pond routing start elevation = 511.00 ft.

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	Outflow cfs
12.17	51.25	511.52					48.13					48.13
12.18	52.48	511.53					49.95					49.95
12.20	53.19	511.54					51.41					51.41
12.22	53.38 <<	511.54					52.36					52.36
12.23	53.11	511.55 <<					52.81					52.81
12.25	52.47	511.55					52.80					52.80
12.27	51.53	511.55					52.40					52.40
12.28	50.37	511.54					51.66					51.66
12.30	49.06	511.53					50.67					50.67
12.32	47.65	511.53					49.50					49.50
12.33	46.15	511.52					48.25					48.25

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 4

Pond B Lower

= Reservoir Hydrograph type Peak discharge = 28.29 cfsStorm frequency = 100 yrsTime to peak = 12.40 hrsTime interval = 1 min Hyd. volume = 55,885 cuft Inflow hyd. No. Reservoir name = 3 - Pond B Upper = Pond B Lower Max. Elevation = 511.86 ftMax. Storage = 51,759 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	Outflow cfs
12.33	48.25	511.83	11.36				11.34		14.80		12.93	26.14
12.35	46.85	511.85	11.39				11.33		15.94		13.82	27.27
12.37	45.34	511.86	11.41				11.34		16.63		14.35	27.97
12.38	43.74	511.86	11.41				11.35		16.94		14.58	28.29
12.40	42.04	511.86 <<	11.41				11.35		16.94		14.59	28.29
12.42	40.28	511.86	11.41				11.34		16.71		14.41	28.05
12.43	38.49	511.85	11.40				11.33		16.28		14.08	27.61
12.45	36.70	511.84	11.39				11.33		15.72		13.65	27.05
12.47	34.83	511.83	11.37				11.34		15.06		13.13	26.40
12.48	32.93	511.82	11.35				11.34		14.30		12.54	25.64

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 5

PR-C1

Hydrograph type	= SCS Runoff	Peak discharge	= 40.96 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.25 hrs
Time interval	= 1 min	Hyd. volume	= 193,012 cuft
Drainage area	= 9.340 ac	Curve number	= 77.000
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.2 min
Total precip.	= 8.51 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs	Outflow cfs)
12.18	37.91
12.20	39.13
12.22	40.07
12.23	40.68
12.25	40.96
40.07	40.05
12.27	40.95
12.28	40.69
12.30	40.23
12.32	39.61
12.33	38.88
12.35	38.07
12.37	37.18

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 6

Diversion Swale

Hydrograph type	= Reach	Peak discharge	= 40.79 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.28 hrs
Time interval	= 1 min	Hyd. volume	= 193,012 cuft
Inflow hyd. No.	= 5 - PR-C1	Section type	Trapezoidal
Reach length	= 244.0 ft	Channel slope	= 1.00 %
Manning's n	= 0.040	Bottom width	= 4.00 ft
Side slope	= 2.0:1	Max. depth	= 1.00 ft
Rating curve x	= 1.478	Rating curve m	= 1.216
Ave. velocity	= 0.00 ft/s	Routing coeff.	= 0.5706

Modified Att-Kin routing method used.

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs)	Inflow cfs	Outflow cfs
12.20	39.13	36.75
12.22	40.07	38.11
12.23	40.68	39.23
12.25	40.96 <<	40.06
12.27	40.95	40.57
12.28	40.69	40.79
12.30	40.23	40.73
12.32	39.61	40.45
12.33	38.88	39.97
12.35	38.07	39.35
12.37	37.18	38.62
12.38	36.22	37.80
12.40	35.19	36.90

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 7

PR-C2

Hydrograph type	= SCS Runoff	Peak discharge	= 7.564 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.17 hrs
Time interval	= 1 min	Hyd. volume	= 30,505 cuft
Drainage area	= 1.350 ac	Curve number	= 81.000
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 15.0 min
Total precip.	= 8.51 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs	Outflow cfs)
12.12	7.144
12.13	7.394
12.15	7.534
12.17	7.564
12.18	7.498
12.20	7.355
12.22	7.150
12.23	6.902

...End

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 8

PR-C3

Hydrograph type	= SCS Runoff	Peak discharge	= 12.94 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.03 hrs
Time interval	= 1 min	Hyd. volume	= 38,887 cuft
Drainage area	= 1.490 ac	Curve number	= 93.000
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 2.0 min
Total precip.	= 8.51 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs	Outflow cfs)
12.02	12.64
12.03	12.94
12.05	12.28

...End

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 9

Pond C Upper

Hydrograph type Peak discharge = 11.95 cfs= Reservoir Storm frequency = 100 yrsTime to peak $= 12.05 \, hrs$ Time interval = 1 min Hyd. volume = 38,886 cuft Inflow hyd. No. = Pond C Upper Reservoir name = 8 - PR-C3 = 10,423 cuft Max. Elevation = 512.79 ftMax. Storage

Storage Indication method used. Wet pond routing start elevation = 512.50 ft.

Hydrograph Discharge Table

(Printed values \geq 90.00% of Qp.)

Time (hrs)		Elevation ft		PfRsr cfs		Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	Outflow cfs
12.03	12.94 <<	512.78	 	 	11.40					11.41
12.05	12.28	512.79 <<	 	 	11.94					11.95
12.07	11.04	512.78	 	 	11.82					11.81
12.08	9.621	512.77	 	 	11.15					11.15

...End

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 10

Combine

Hydrograph type = Combine Peak discharge = 45.18 cfsStorm frequency = 100 yrsTime to peak $= 12.28 \, hrs$ Time interval = 1 min Hyd. volume = 231,898 cuft Contrib. drain. area Inflow hyds. = 6, 9 = 0.000 ac

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs)	Hyd. 6 + (cfs)	Hyd. 9 = (cfs)	Outflow (cfs)
12.18	35.21	5.885	41.10
12.20	36.75	5.522	42.27
12.22	38.11	5.231	43.34
12.23	39.23	4.985	44.21
12.25	40.06	4.766	44.82
12.27	40.57	4.565	45.14
12.28	40.79 <<	4.395	45.18
40.00	40.70	4.000	44.00
12.30	40.73	4.229	44.96
12.32	40.45	4.061	44.51
12.33	39.97	3.892	43.86
12.35	39.35	3.721	43.07
12.37	38.62	3.550	42.17
12.38	37.80	3.378	41.18

...End

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 11

Pond C Infiltration

Hydrograph type = Reservoir Peak discharge = 28.76 cfsStorm frequency = 100 yrsTime to peak $= 12.43 \, hrs$ Hyd. volume Time interval = 1 min = 58,427 cuft Inflow hyd. No. = Pond C Infiltrati Reservoir name = 10 - Combine Max. Elevation = 513.74 ftMax. Storage = 39,240 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	Outflow cfs
12.33	43.86	513.66					26.06				9.339	26.06
12.35	43.07	513.69					26.97				9.365	26.97
12.37	42.17	513.71					27.68				9.386	27.68
12.38	41.18	513.73					28.21				9.401	28.21
12.40	40.11	513.74					28.56				9.411	28.56
12.42	38.96	513.74					28.74				9.416	28.74
12.43	37.74	513.74 <<					28.76				9.416	28.76
12.45	36.45	513.74					28.64				9.413	28.64
12.47	35.11	513.73					28.38				9.405	28.38
12.48	33.73	513.72					27.99				9.394	27.99
12.50	32.30	513.70					27.49				9.380	27.49
12.52	30.82	513.69					26.89				9.363	26.89
12.53	29.30	513.67					26.19				9.342	26.19

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 12

Pond C Lower

Hydrograph type = Reservoir Peak discharge = 28.70 cfsStorm frequency = 100 yrsTime to peak $= 12.45 \, hrs$ Time interval = 1 min Hyd. volume = 58,415 cuftInflow hyd. No. = 11 - Pond C InfiltratiorReservoir name = Pond C Lower Max. Elevation = 513.76 ftMax. Storage = 5,707 cuft

Storage Indication method used.

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	Outflow cfs
12.38	28.21	513.73	18.57	0.024			6.198	12.33		8.664		27.21
12.40	28.56	513.74	18.63	0.023			6.341	12.23		9.468		28.07
12.42	28.74	513.75	18.66	0.023			6.410	12.19		9.877		28.50
12.43	28.76 <<	513.75	18.67	0.023			6.438	12.18		10.06		28.70
12.45	28.64	513.75 <<	18.67	0.023			6.438	12.18		10.06		28.70
12.47	28.38	513.75	18.66	0.023			6.417	12.19		9.918		28.55
12.48	27.99	513.75	18.65	0.023			6.374	12.21		9.658		28.27
12.50	27.49	513.74	18.62	0.023			6.310	12.25		9.295		27.88
12.52	26.89	513.73	18.58	0.024			6.225	12.31		8.817		27.37
12.53	26.19	513.72	18.54	0.024			6.123	12.37		8.243		26.76
12.55	25.41	513.71	18.49	0.024			6.006	12.45		7.581		26.06

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 13

Combine C

Hydrograph type = Combine Peak discharge = 32.18 cfsStorm frequency = 100 yrsTime to peak $= 12.42 \, hrs$ Time interval = 1 min Hyd. volume = 88,920 cuft = 7, 12 Contrib. drain. area Inflow hyds. = 1.350 ac

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs)	Hyd. 7 + (cfs)	Hyd. 12 = (cfs)	Outflow (cfs)
12.37	4.440	25.26	29.70
12.38	4.157	27.21	31.37
12.40	3.904	28.07	31.97
12.42	3.683	28.50	32.18
12.43	3.488	28.70	32.18
12.45	3.313	28.70 <<	32.01
12.47	3.152	28.55	31.70
12.48	3.000	28.27	31.27
12.50	2.851	27.88	30.73
12.52	2.701	27.37	30.08
12.53	2.553	26.76	29.32

...End

APPENDIX 10 RESERVOIR REPORTS, CHANNEL PROTECTION VOLUME CALCULATIONS, SEDIMENT BASIN CALCS

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Pond No. 1 - Pond B Upper

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 508.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	508.00	7,121	0	0
1.00	509.00	8,571	7,834	7,834
2.00	510.00	10,191	9,368	17,202
2.50	510.50	11,161	5,336	22,538
3.00	511.00	12,165	5,829	28,367
3.75	511.75	13,649	9,674	38,041

Culvert / Orifice Structures Weir Structures [A] [B] [C] [PrfRsr] [A] [B] [C] [D] = 0.000.00 0.00 = 50.00 0.00 0.00 0.00 Rise (in) 0.00 Crest Len (ft) Span (in) = 0.000.00 0.00 0.00 Crest El. (ft) = 511.00 0.00 0.00 0.00 No. Barrels = 0 0 0 Weir Coeff. = 2.603.33 3.33 3.33 Invert El. (ft) = 0.000.00 0.00 0.00 Weir Type = Broad = 0.000.00 0.00 0.00 Multi-Stage No No No Length (ft) = No Slope (%) = 0.000.00 0.00 n/a n/a N-Value = .013 .013 .013 Orifice Coeff. = 0.600.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Wet area) Multi-Stage = n/a No No No TW Elev. (ft) = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage ft	Storage cuft	Elevation ft	Clv A cfs	CIv B cfs	CIv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	508.00					0.00						0.000
1.00	7,834	509.00					0.00						0.000
2.00	17,202	510.00					0.00						0.000
2.50	22,538	510.50					0.00						0.000
3.00	28,367	511.00					0.00						0.000
3.75	38,041	511.75					84.44						84.44

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Pond No. 2 - Pond B Lower

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 507.50 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	507.50	8,283	0	0
0.50	508.00	8,654	4,233	4,233
1.50	509.00	10,202	9,416	13,650
2.50	510.00	11,940	11,059	24,708
3.00	510.50	12,971	6,225	30,934
3.50	511.00	14,037	6,750	37,683
4.25	511.75	15,608	11,111	48,794
4.50	512.00	39,530	6,664	55,458

Culvert / Orifice Structures Weir Structures [A] [B] [C] [PrfRsr] [A] [B] [C] [D] = 15.00 0.00 0.00 0.00 = 16.00 0.00 30.00 0.00 Rise (in) Crest Len (ft) Span (in) = 15.00 0.00 0.00 0.00 Crest El. (ft) = 510.50 0.00 511.50 0.00 No. Barrels = 1 0 Weir Coeff. = 3.33 3.33 2.60 3.33 Invert El. (ft) = 507.50 0.00 0.00 0.00 Weir Type = Rect Broad Length (ft) = 30.000.00 0.00 0.00 Multi-Stage = Yes No No No Slope (%) = 0.300.00 0.00 n/a N-Value = .013 .013 .013 n/a = 0.600.60 0.60 0.60 = 24.000 (by Contour) Orifice Coeff. Exfil.(in/hr) Multi-Stage = n/aNo No TW Elev. (ft) = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage ft	Storage cuft	Elevation ft	CIv A cfs	Clv B cfs	CIv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	507.50	0.00				0.00		0.00		0.000		0.000
0.50	4,233	508.00	0.00				0.00		0.00		4.808		4.808
1.50	13,650	509.00	0.00				0.00		0.00		5.668		5.668
2.50	24,708	510.00	0.00				0.00		0.00		6.633		6.633
3.00	30,934	510.50	0.00				0.00		0.00		7.206		7.206
3.50	37,683	511.00	9.90 ic				9.90 s		0.00		7.798		17.70
4.25	48,794	511.75	11.24 ic				11.20 s		9.75		8.671		29.62
4.50	55,458	512.00	11.62 ic				11.60 s		27.58		21.961		61.14

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Pond No. 4 - Pond C Upper

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 510.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	510.00	1,212	0	0
1.00	511.00	2,985	2,033	2,033
2.00	512.00	4,879	3,893	5,926
2.50	512.50	5,860	2,681	8,607
3.00	513.00	6,865	3,178	11,784

Culvert / Orifice Structures Weir Structures [A] [B] [C] [PrfRsr] [A] [B] [C] [D] Rise (in) = 0.000.00 0.00 0.00 Crest Len (ft) = 30.00 0.00 0.00 0.00 = 0.000.00 0.00 0.00 Crest El. (ft) = 512.50 0.00 0.00 0.00 Span (in) No. Barrels = 0 0 0 Weir Coeff. = 2.60 3.33 3.33 3.33 Invert El. (ft) = 0.000.00 0.00 0.00 Weir Type = Broad = 0.00 0.00 0.00 0.00 Multi-Stage No Length (ft) = No No No = 0.000.00 0.00 n/a Slope (%) N-Value = .013 .013 .013 n/a 0.60 0.60 0.60 = 0.000 (by Wet area) Orifice Coeff. = 0.60Exfil.(in/hr) TW Elev. (ft) Multi-Stage = n/aNo No No = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

_	•	_											
Stage ft	Storage cuft	Elevation ft	CIv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	510.00					0.00						0.000
1.00	2,033	511.00					0.00						0.000
2.00	5,926	512.00					0.00						0.000
2.50	8,607	512.50					0.00						0.000
3.00	11,784	513.00					27.58						27.58

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Pond No. 6 - Pond C Infiltration

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 511.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	511.00	11,721	0	0
0.50	511.50	12,624	6,084	6,084
1.00	512.00	13,556	6,543	12,627
1.50	512.50	14,514	7,015	19,643
2.00	513.00	15,505	7,503	27,145
2.50	513.50	16,522	8,005	35,150
3.00	514.00	17,409	8,481	43,631

Culvert / Orifice Structures Weir Structures [A] [A] [B] [C] [PrfRsr] [B] [C] [D] 0.00 0.00 0.00 0.00 = 0.000.00 0.00 = 8.00 Rise (in) Crest Len (ft) Span (in) = 0.000.00 0.00 0.00 Crest El. (ft) = 512.50 0.00 0.00 0.00 Weir Coeff. = 2.60 3.33 3.33 3.33 No. Barrels = 0 0 = 0.000.00 0.00 0.00 Weir Type Invert El. (ft) = Broad Length (ft) = 0.000.00 0.00 0.00 Multi-Stage = No No No No Slope (%) = 0.000.00 0.00 n/a N-Value = .013 .013 .013 n/a Orifice Coeff. = 0.600.60 0.60 0.60 Exfil.(in/hr) = 24.000 (by Contour) = n/a No No No TW Elev. (ft) = 0.00Multi-Stage

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage ft	Storage cuft	Elevation ft	Clv A cfs	CIv B cfs	CIv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	511.00					0.00				0.000		0.000
0.50	6,084	511.50					0.00				7.013		7.013
1.00	12,627	512.00					0.00				7.531		7.531
1.50	19,643	512.50					0.00				8.063		8.063
2.00	27,145	513.00					7.35				8.614		15.97
2.50	35,150	513.50					20.80				9.179		29.98
3.00	43,631	514.00					38.21				9.672		47.88

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Pond No. 5 - Pond C Lower

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 511.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	511.00	1,127	0	0
0.50	511.50	1,429	637	637
1.00	512.00	1,761	796	1,433
1.50	512.50	2,123	969	2,403
2.00	513.00	2,515	1,158	3,561
2.50	513.50	2,936	1,361	4,922
3.00	514.00	3,224	1,539	6,461

Culvert / Orifice Structures Weir Structures [A] [A] [B] [D] [B] [C] [PrfRsr] [C] 3.00 8.00 0.00 30.00 = 18.00 0.00 0.00 = 24.00 Rise (in) Crest Len (ft) Span (in) = 18.00 3.00 0.00 0.00 Crest El. (ft) = 513.30 511.60 0.00 513.50 Weir Coeff. 3.33 3.33 2.60 No. Barrels = 2 0 = 3.331 = 511.00 511.00 0.00 0.00 Weir Type Invert El. (ft) = Rect Rect Broad = 210.00 0.00 0.00 0.00 Multi-Stage = Yes Yes No No Length (ft) Slope (%) = 0.500.00 0.00 n/a N-Value = .013 .013 .013 n/a Orifice Coeff. = 0.600.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Contour) = n/a No No TW Elev. (ft) = 0.00Multi-Stage Yes

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	CIv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	511.00	0.00	0.00			0.00	0.00		0.00			0.000
0.50	637	511.50	0.14 ic	0.14 ic			0.00	0.00		0.00			0.145
1.00	1,433	512.00	5.91 ic	0.11 ic			0.00	5.72 s		0.00			5.829
1.50	2,403	512.50	13.02 oc	0.09 ic			0.00	12.92 s		0.00			13.01
2.00	3,561	513.00	15.06 oc	0.06 ic			0.00	15.00 s		0.00			15.06
2.50	4,922	513.50	17.56 oc	0.03 ic			3.41 s	14.11 s		0.00			17.55
3.00	6,461	514.00	19.66 oc	0.02 ic			8.45 s	11.14 s		27.58			47.19

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 2

PR-B

= SCS Runoff	Peak discharge	= 11.56 cfs
= 1 yrs	Time to peak	= 12.23 hrs
= 1 min	Hyd. volume	= 50,982 cuft
= 9.770 ac	Curve number	= 87.000
= 0.0 %	Hydraulic length	= 0 ft
= User	Time of conc. (Tc)	= 19.8 min
= 2.65 in	Distribution	= Type III
= 24 hrs	Shape factor	= 484
	= 1 yrs = 1 min = 9.770 ac = 0.0 % = User = 2.65 in	= 1 yrs = 1 min = 9.770 ac = 0.0 % Hydraulic length Time of conc. (Tc) = 2.65 in Time to peak Hyd. volume Curve number Time of conc. (Tc)

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Time (hrs	Outflow cfs)
12.17	10.83
12.18	11.18
12.20	11.41
12.22	11.54
12.23	11.56
12.25	11.49
12.27	11.35
12.28	11.16
12.30	10.94
12.32	10.68
12.33	10.40

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.514

Tuesday, 08 / 15 / 2017

Hyd. No. 8

PR-C3

Hydrograph type	= SCS Runoff	Peak discharge	= 3.502 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.03 hrs
Time interval	= 1 min	Hyd. volume	= 9,741 cuft
Drainage area	= 1.490 ac	Curve number	= 93.000
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 2.0 min
Total precip.	= 2.65 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Discharge Table

(Printed values >= 90.00% of Qp.)

Outflow cfs)
3.398
3.502
3.344

...End

POND STAGE STORAGE CALCULATIONS

DATE REVISED SHEET WO. NO. OF 1081.02 08/08/17 5

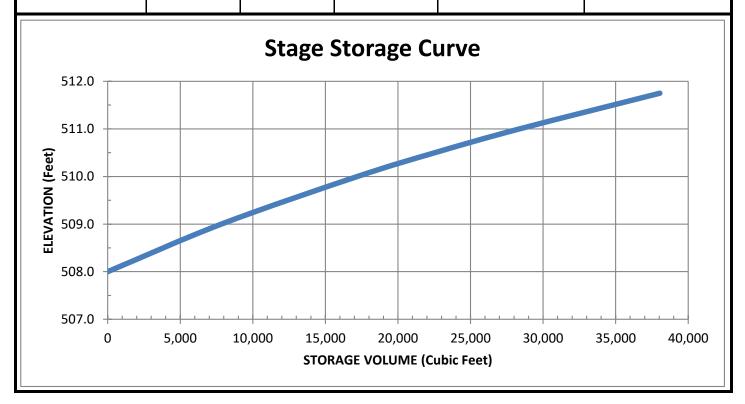
PROJECT TITLE

LOCATION Town of Chester

Suresky & Sons

CALCULATED BY APPROVED BY KW

REF DRAWING(S) JS


DWG LAST REV. XX/XX/XX

B Upper Pond:

Drainage Area: N/A acres

Required Total Storage Volume: N/A cubic feet (Drainage Area x 2,000)

Water Surface Elevation	Surface Area	Conic Area	Difference in Elevation	Incremental Storage	Total Storage Volume
(Feet)	(Square Feet)	(Square Feet)	(Feet)	(Cubic Feet)	(Cubic Feet)
508.0	7,121.0				0.0
509.0	8,571.0	7,834.8	1.0	7,834.8	7,834.8
510.0	10,191.0	9,369.3	1.0	9,369.3	17,204.1
510.5	11,161.0	10,672.3	0.5	5,336.2	22,540.3
511.0	12,165.0	11,659.4	0.5	5,829.7	28,370.0
511.75	13,649.0	12,899.9	8.0	9,674.9	38,044.9

ROPERTIES Achieving Successful Results with Innovative Designs

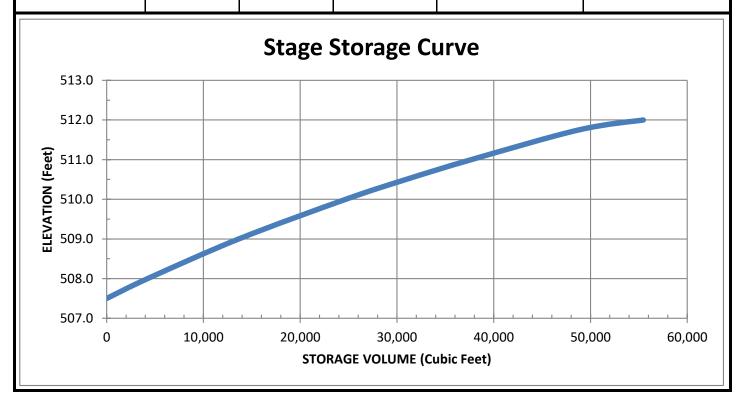
POND STAGE STORAGE CALCULATIONS

WO. NO. DATE REVISED SHEET OF 1081.02 08/08/17 2 5

PROJECT TITLE

Suresky & Sons Town of Chester

CALCULATED BY APPROVED BY REF DRAWING(S)


KW JS DWG LAST REV. XX/XX/XX

Pond: B Lower Drainage Area: N/A acres

Required Total Storage Volume: N/A cubic feet (Drainage Area x 2,000)

LOCATION

Water Surface Elevation	Surface Area	Conic Area	Elevation	Incremental Storage (Cubic Feet)	Total Storage Volume (Cubic Feet)
(Feet)	(Square Feet)	(Square Feet)	(Feet)	(Cubic Feet)	(Cubic Feet)
507.5	8,283.0				0.0
508.0	8,654.0	8,467.8	0.5	4,233.9	4,233.9
509.0	10,202.0	9,417.4	1.0	9,417.4	13,651.3
510.0	11,940.0	11,059.6	1.0	11,059.6	24,710.9
510.5	12,971.0	12,451.9	0.5	6,226.0	30,936.9
511.0	14,037.0	13,500.5	0.5	6,750.2	37,687.1
511.75	15,608.0	14,815.6	8.0	11,111.7	48,798.8
512.0	39,530.0	26,659.1	0.3	6,664.8	55,463.6
_					
				_	

ROPERTIES Achieving Successful Results with Innovative Designs

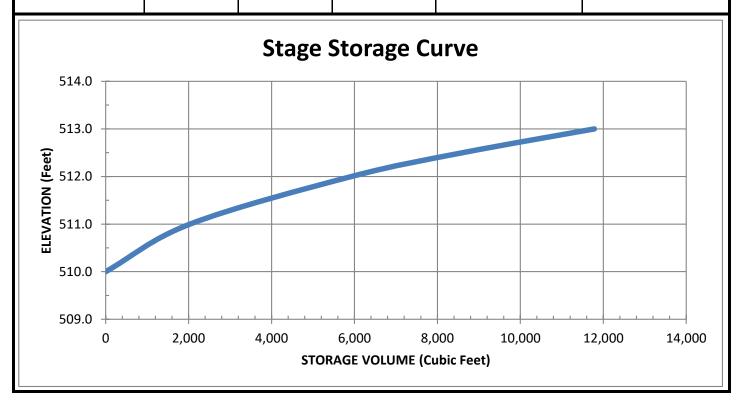
POND STAGE STORAGE CALCULATIONS

WO. NO. DATE REVISED SHEET OF 1081.02 08/08/17 3 5

PROJECT TITLE

Suresky & Sons Town of Chester

CALCULATED BY APPROVED BY REF DRAWING(S)


KW JS DWG LAST REV. XX/XX/XX

Pond: C Upper Drainage Area: N/A acres

Required Total Storage Volume: N/A cubic feet (Drainage Area x 2,000)

LOCATION

Water Surface Elevation (Feet)	Surface Area (Square Feet)	Conic Area (Square Feet)	Difference in Elevation (Feet)	Incremental Storage (Cubic Feet)	Total Storage Volume (Cubic Feet)
510.0	1,212.0				0.0
511.0	2,985.0	2,033.0	1.0	2,033.0	2,033.0
512.0	4,879.0	3,893.4	1.0	3,893.4	5,926.4
512.5	5,860.0	5,362.0	0.5	2,681.0	8,607.4
513.0	6,865.0	6,355.9	0.5	3,177.9	11,785.4
i					

POND STAGE STORAGE CALCULATIONS

REVISED SHEET WO. NO. DATE OF 1081.02 08/08/17 5

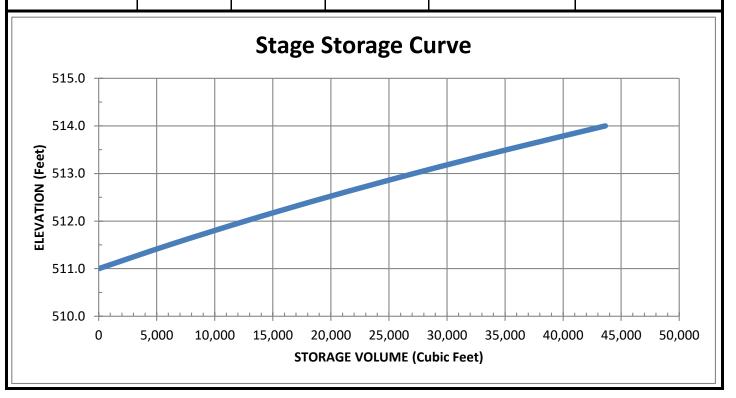
PROJECT TITLE

LOCATION Town of Chester

Suresky & Sons

CALCULATED BY APPROVED BY

REF DRAWING(S)


KW JS **DWG LAST REV. XX/XX/XX**

Pond: **C Infiltration**

Drainage Area: N/A acres

Required Total Storage Volume: N/A cubic feet (Drainage Area x 2,000)

Water Surface Elevation	Surface Area	Conic Area	Difference in Elevation	Incremental Storage	Total Storage Volume
(Feet)	(Square Feet)	(Square Feet)	(Feet)	(Cubic Feet)	(Cubic Feet)
511.0	11,721.0				0.0
511.5	12,624.0	12,169.7	0.5	6,084.9	6,084.9
512.0	13,556.0	13,087.2	0.5	6,543.6	12,628.5
512.5	14,514.0	14,032.3	0.5	7,016.1	19,644.6
513.0	15,505.0	15,006.8	0.5	7,503.4	27,148.0
513.5	16,522.0	16,010.8	0.5	8,005.4	35,153.4
514.0	17,409.0	16,963.6	0.5	8,481.8	43,635.2
				_	

ROPERTIES Achieving Successful Results with Innovative Designs

POND STAGE STORAGE CALCULATIONS

WO. NO. DATE REVISED SHEET OF 1081.02 08/08/17 5 5

PROJECT TITLE

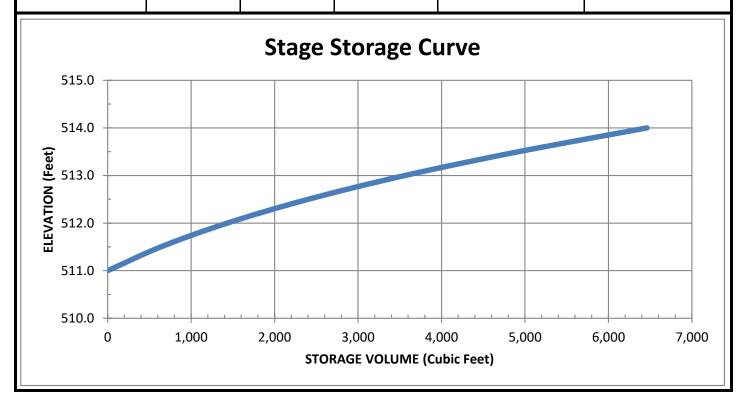
LOCATION

Town of Chester

Suresky & Sons

REF DRAWING(S)

CALCULATED BY APPROVED BY **KW** JS


DWG LAST REV. XX/XX/XX

Pond: **C Lower**

Drainage Area: N/A acres

Required Total Storage Volume: N/A cubic feet (Drainage Area x 2,000)

					•
Water Surface Elevation	Surface Area	Conic Area	Difference in Elevation	Incremental Storage	Total Storage Volume
(Feet)	(Square Feet)	(Square Feet)	(Feet)	(Cubic Feet)	(Cubic Feet)
511.0	1,127.0				0.0
511.5	1,429.0	1,275.0	0.5	637.5	637.5
512.0	1,761.0	1,592.1	0.5	796.1	1,433.6
512.5	2,123.0	1,939.2	0.5	969.6	2,403.2
513.0	2,515.0	2,316.2	0.5	1,158.1	3,561.3
513.5	2,936.0	2,722.8	0.5	1,361.4	4,922.7
514.0	3,224.0	3,078.9	0.5	1,539.4	6,462.1

APPENDIX 11 CONSTRUCTION SITE INSPECTION FORM, NOTICE OF INTENT, AND MS4 ACCEPTANCE

SWPPP INSPECTION REPORT

CNGINEERING	W.O. No.:	Date:	Greater than 5 Ac. Waiver? Of Disturbance?	Page Of
& SURVEYING	Project	1-2	Weather Conditions: Dry	☐ Rain ☐ Snow
ROPERTIES	Name:		Soil Conditions: Dry	Wet Saturated
Achieving Successful Results			Arrival Time :	Photographs Taken?
with Innovative Designs	Location:		Departing Time:	Yes No
Owner:	Phone:		Documents on-site?	SWPPP:
Contractor:	Phone:		Weekly Inspections:	NOI:
1. Description of current activities onsite and phase	of construction (attach	sketch showing areas		
2. Description of the condition of the runoff at all poi		3. Description of the	condition of all natural surface wa	ater bodies located
the construction site (including onsite conveyance s	ystems):	within, or immediately	y adjacent to the construction site):
4. Identify all erosion and sediment control practices	that require renair	5 Identify all erosion	and sediment control practices the	nat were not installed
and/or maintenance:	that require repair		nctioning as designed:	lat were not installed
		, , ,		
6. Identify current status of construction for all post-	construction stormwater		s) required to erosion and sedime	
management practices:		and post-construction	n stormwater management praction	ces:
_				
Was the owner and contractor(s) notified	of the deficiencies and	renairs needed within	one (1) husiness day?	Yes
was the owner and contractor(s) notined	or the deliciencies alla			169 🖂 MO
Notice Page 22		<u>Qua</u>	lified Inspector	
Notice: GP-02-01				
This inspection was performed solely for the purpose of determining compliance				
with NYSDEC SPDES General Permit: GP-10-001	Name	and Title	Sign	ature

NOTICE OF INTENT

New York State Department of Environmental Conservation Division of Water

625 Broadway, 4th Floor Albany, New York 12233-3505

NYR			

(for DEC use only)

Stormwater Discharges Associated with Construction Activity Under State Pollutant Discharge Elimination System (SPDES) General Permit # GP-0-15-002 All sections must be completed unless otherwise noted. Failure to complete all items may result in this form being returned to you, thereby delaying your coverage under this General Permit. Applicants must read and understand the conditions of the permit and prepare a Stormwater Pollution Prevention Plan prior to submitting this NOI. Applicants are responsible for identifying and obtaining other DEC permits that may be required.

-IMPORTANTRETURN THIS FORM TO THE ADDRESS ABOVE

OWNER/OPERATOR MUST SIGN FORM

Owner/Operator Information
Owner/Operator (Company Name/Private Owner Name/Municipality Name)
Suresky & Sons
Owner/Operator Contact Person Last Name (NOT CONSULTANT)
S u r e s k y
Owner/Operator Contact Person First Name
J o s e p h
Owner/Operator Mailing Address
2 H a t f i e 1 d L a n e
City
G o s h e n
State Zip N Y 1 0 9 2 4 -
Phone (Owner/Operator) Fax (Owner/Operator) 8 4 5 - 2 9 4 - 5 1 7 7
Email (Owner/Operator)
j o e s @ s u r e s k y . c o m
FED TAX ID
1 4 - 1 4 0 3 9 8 3 (not required for individuals)

Project Site Informa	tion											
Project/Site Name												
Suresky & Sons Chester												
Street Address (NOT P.O. BOX)												
3 9 E 1 k a y D r i v e												
Side of Street ○ North ● South ○ East ○ West												
City/Town/Village (THAT ISSUES BUILDING PERMIT) Town of Chester												
State Zip County DEC Region N Y 1 0 9 1 8 - 0 r a n g e 3												
Name of Nearest Cross Street B l a c k M e a d o w R o a d												
Distance to Nearest Cross Street (Feet) 9 5 0	Project In Relation to Cross Street North O South O East O West											
Tax Map Numbers Section-Block-Parcel 6 - 1 - 7 0 . 1 2	Tax Map Numbers											

1. Provide the Geographic Coordinates for the project site in NYTM Units. To do this you $\underline{\text{must}}$ go to the NYSDEC Stormwater Interactive Map on the DEC website at:

www.dec.ny.gov/imsmaps/stormwater/viewer.htm

Zoom into your Project Location such that you can accurately click on the centroid of your site. Once you have located your project site, go to the tool boxes on the top and choose "i"(identify). Then click on the center of your site and a new window containing the X, Y coordinates in UTM will pop up. Transcribe these coordinates into the boxes below. For problems with the interactive map use the help function.

X Coordinates (Easting)
5 6 0 4 3 9

Y C	oor!	dina	ates	(N	orth	ning)
4	5	7	6	9	4	7	

- 2. What is the nature of this construction project?
 - New Construction
 - O Redevelopment with increase in impervious area
 - O Redevelopment with no increase in impervious area

3. Select the predominant land use for both SELECT ONLY ONE CHOICE FOR EACH	pre and post development conditions.
Pre-Development Existing Land Use	Post-Development Future Land Use
● FOREST	○ SINGLE FAMILY HOME Number of Lots
O PASTURE/OPEN LAND	O SINGLE FAMILY SUBDIVISION
O CULTIVATED LAND	O TOWN HOME RESIDENTIAL
O SINGLE FAMILY HOME	O MULTIFAMILY RESIDENTIAL
O SINGLE FAMILY SUBDIVISION	○ INSTITUTIONAL/SCHOOL
O TOWN HOME RESIDENTIAL	○ INDUSTRIAL
○ MULTIFAMILY RESIDENTIAL	● COMMERCIAL
○ INSTITUTIONAL/SCHOOL	○ MUNICIPAL
○ INDUSTRIAL	○ ROAD/HIGHWAY
○ COMMERCIAL	O RECREATIONAL/SPORTS FIELD
○ ROAD/HIGHWAY	○ BIKE PATH/TRAIL
O RECREATIONAL/SPORTS FIELD	○ LINEAR UTILITY (water, sewer, gas, etc.)
○ BIKE PATH/TRAIL	O PARKING LOT
O LINEAR UTILITY	○ CLEARING/GRADING ONLY
O PARKING LOT	O DEMOLITION, NO REDEVELOPMENT
OTHER	O WELL DRILLING ACTIVITY *(Oil, Gas, etc.)
*Note: for gas well drilling, non-high volum	OTHER
4. In accordance with the larger common plan enter the total project site area; the tot existing impervious area to be disturbed (activities); and the future impervious are disturbed area. (Round to the nearest tent	of development or sale, tal area to be disturbed; for redevelopment tal constructed within the
	sting Impervious Area Within To Be Disturbed Disturbed Area 1 0 5 8
5. Do you plan to disturb more than 5 acres o	of soil at any one time? • Yes O No
5. Indicate the percentage of each Hydrologic A B B C B C C C C C C C C C C C C C C	C Soil Group(HSG) at the site. C D 9 7 %
7. Is this a phased project?	● Yes ○ No
8. Enter the planned start and end dates of the disturbance activities. Start D $0 4 /$	End Date 0 2 / 2 0 1 8 - 0 7 / 3 0 / 2 0 1 8

area?

/	Iden			ne :	nea	res	st	su	rfac	e w	at	erk	ood	у(.	ies)	to	wl	nic	ch	cor	ıst	ru	ct	io	n :	sit	e	ru	noi	ff	wi	11		
	disch	narg	e.																															
Name W e	Τ. Ι.	a	n	3	(M	R	T_	e :		v	٩	n)		T								T	T	T	T	T	T	T	T			
		u l		<u> </u>	1	VV							••	,		\pm										<u> </u>		<u> </u>	 	+	<u> </u>			_
9a.	Ty Wetl														ion Answ																			
	Wetl	and	/	Sta	ate	Ju:	ris	sdi	cti	on (Off	S	ite	9																				
С	Wetl	and	/ 1	Fed	lera	al .	Jui	ris	dic	tio	n (n	Sit	e	(An	swe	r 9	b)																
C	Wetl	and	/ 1	Fec	lera	al o	Jui	ris	dic	tio	n (off	Si	Lte	<u> </u>																			
С	Stre	am	/ C:	ree	ek C	n i	Sit	te																										
С	Stre	am	/ C:	ree	ek C	off	S	ite																										
С	Rive	r 0	n S	ite	<u> </u>																													
С	9b. How was the wetland identified? O River Off Site																																	
C) Lake	On	Si	te															?eo	n 1 1 :	a t c) T V	, IV	ſan										
	O Lake On Site O Regulatory Map O Lake Off Site O Delineated by Consultant																																	
	O Other Type On Site O Delineated by Consultant O Delineated by Army Corps of Engineers																																	
	O Other Type Off Site O Other Type Off Site O Other (identify)																																	
			7 PC																						11									
10.															esti -15-			pee	en	ide	ent	if	ie	d a	as	a		() Y	es) No	o	
11.									ed 5-00		one	e o	f t	the	e Wa	ter	she	eds	i	der	nti	fi	ed	i	n			(Y	es	•) No)	
12.	ai wa	reas ater	as s?	soc	ciat	ted	. W	ith							wat assi			d										(y	es) No	o	
13.	ez io	rist dent	ing ifi	ir ed	mper as	rvi an	ou E	s o	cove F	r a	nd the	wh e U	ere SD	e t	arb the Soil stur	Soi Su	l s	Slo	ре		ıas	е	is					(Y	es) No	Þ	
14.															na OO f			lja	ıce	nt								() Y	es) No	5	

15. Does the site runoff enter a separate storm sewer system (including roadside drains, swales, ditches, culverts, etc)?	No O Unknown
16. What is the name of the municipality/entity that owns the separate system?	storm sewer
O r a n g e C o u n t y D e p a r t m e n t o f P u b 1	ic Works
17. Does any runoff from the site enter a sewer classified of Yes as a Combined Sewer?	No O Unknown
18. Will future use of this site be an agricultural property as defined by the NYS Agriculture and Markets Law?	○ Yes ● No
19. Is this property owned by a state authority, state agency, federal government or local government?	O Yes ● No
20. Is this a remediation project being done under a Department approved work plan? (i.e. CERCLA, RCRA, Voluntary Cleanup Agreement, etc.)	○ Yes ● No
21. Has the required Erosion and Sediment Control component of the SWPPP been developed in conformance with the current NYS Standards and Specifications for Erosion and Sediment Control (aka Blue Book)?	● Yes ○ No
22. Does this construction activity require the development of a SWPPP that includes the post-construction stormwater management practice component (i.e. Runoff Reduction, Water Quality and Quantity Control practices/techniques)? If No, skip questions 23 and 27-39.	● Yes ○ No
23. Has the post-construction stormwater management practice component of the SWPPP been developed in conformance with the current NYS Stormwater Management Design Manual?	● Yes ○ No

24. The Stormwater Pollution Prevention Plan (SWPPP) was prepared by:														
● Professional Engineer (P.E.)														
O Soil and Water Conservation District (SWCD)														
O Registered Landscape Architect (R.L.A)														
O Certified Professional in Erosion and Sediment Control (CPESC)														
Owner/Operator														
Other														
WPPP Preparer Engineering & Surveying Properties, PC														
ontact Name (Last, Space, First) Samuelson, Jay														
Mailing Address														
7 1 C 1 i n t o n S t r e e t														
ity														
M o n t g o m e r y														
tate Zip														
N Y 1 2 5 4 9														
hone Fax 8 4 5 - 4 5 7 - 7 7 2 7 8 4 5 - 4 5 7 - 1 8 9 9														
mail														
jay@ep-pc.com														

SWPPP Preparer Certification

I hereby certify that the Stormwater Pollution Prevention Plan (SWPPP) for this project has been prepared in accordance with the terms and conditions of $\ensuremath{\mathsf{I}}$ the GP-0-15-002. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of this permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.

First Name	<u>MI</u>
Jay	
Last Name	
Samuelson	
Signature	
J Samuel	Date 1 0 / 0 6 / 2 0 1 7

25.			s a acti									ce	sc	hec	dul	Le	fo	r t	he	р	lar	nne	d ı	mar	nag	em	en [.]	t			0 :	Yes		O 1	οV		
26.			lect ploy											sec	dir	nen	t	con	ıtr	ol	pı	cac	ti	ces	s t	ha	t v	wi	11	be							
			T	em	pc	ra	ry	St	rι	1C	tuı	ra]	<u>L</u>								7	/eg	jet	a	ti	vе	M	ea	ເຣບ	ıre	28						
) Ch	eck	: D	ams	1														B :	rus	sh	Ma	tti	.ng	ſ										
		() Coi	nst	ru	cti	on	Ro	ad	St	tab	i 1:	iza	ati	on						D 1	une	. S	ta	bi]	.iz	at	io	n								
		() Du	st	Co	ntr	ol														G :	ras	se	d '	Wat	er	wa	У									
		(Ea:	rth	ı D	ike	l														M	ulc	hi	ng													
		() Le	zel	. S	pre	ade	r) P :	rot	ec	ti:	ng	Vε	ge	ta	tio	on							
		() Pe	cin	et	er	Dik	e/	Swa	ale	е										R	ecr	ea	ti	on	Ar	ea	I	mpı	rov	em	ent	:				
		() Pij	рe	sl	ope	Dr	ai	n												s	eed	lin	g													
		(Po	rta	bl	e S	edi	me	nt	Ta	ank) S (odd	lin	g													
		(Ro	ck	Da	m															១៩	tra	w/	Ha	y E	Bal	.e	Di	ke								
		(Sec	lin	en	t B	asi	n													១៩	tre	am	ba:	nk	Pr	ot	ec	tio	on							
			Sec	lin	en	t T	rap	s) T (emp	or	ar	y S	wa	ıle	1									
) si	Lt	Fe	nce	l														т	ops	oi	1i:	ng												
			Sta	abi	li	zed	Co	ns	trı	uct	tio	n I	∃nt	ra	nc	e					v	ege	ta	ti:	ng	Wa	ıte	rw	ays	s							
		() st	orn	ı D	rai	n I	nl	et	P	rot	ect	ic	on							T	er	~m =	m	an i	-	۲Þ	~ 1	.a+	-117	ר בי ד	l					
		() St:	raw	7/H	ay	Bal	e	Dil	ke											-	<u> </u>	. 1110	411	<u> </u>				200	- 41		_					
		(Tei	npc	ra	ry	Acc	es	s T	Wat	ter	way	7 (Cro	ss	ing	3				D	ebr	ris	В	asi	.n											
		(Tei	npc	ra	ry	Sto	rm	dra	aiı	n D	ive	ers	sio	n						D :	ive	ers	io	n												
		(Tei	npc	ra	ry	Swa	le												\subset	G	rad	le	St	abi	.li	.za	ti	on	st	ru	ctu	ıre				
		() Tu:	rbi	.di	ty	Cur	ta	in											\subset	L	and	l G	ra	dir	ıg											
		() Wa	er	b	ars	1														L :	ine	ed	Wa	ter	wa	y	(R	ocl	k)							
																					Pa	ave	ed	Ch	anr	el	. (Co	ncı	ret	e)						
			B	Lot	:e	chn	ic	al												\subset	Pa	ave	ed	Fl	ume	.											
			○ Br	usl	h 1	(at	tino	a												\subset	R	eta	in	in	g V	la1	.1										
			- ○ Wa					-													R :	ipr	ap	S	lor	е	Pr	ot	ect	tic	n						
						-5															R	ock	. 0	ut	let	: F	ro	te	ct:	ion	L						
Ot	th:	er) S 1	tre	am	ba	nk	Pr	ot	ec	tio	on							
	T																																				
	T			$\frac{\perp}{\parallel}$			$\frac{\perp}{\parallel}$				 																				<u> </u>					\exists	_
								1	1	1		1		1	1	1	1	1	1		1	1			1		I		1	1	I	1					

Post-construction Stormwater Management Practice (SMP) Requirements

Important: Completion of Questions 27-39 is not required
 if response to Question 22 is No.

- 27. Identify all site planning practices that were used to prepare the final site plan/layout for the project.
 - Preservation of Undisturbed Areas
 - Preservation of Buffers
 - Reduction of Clearing and Grading
 - O Locating Development in Less Sensitive Areas
 - O Roadway Reduction
 - O Sidewalk Reduction
 - O Driveway Reduction
 - O Cul-de-sac Reduction
 - Building Footprint Reduction
 - O Parking Reduction
- 27a. Indicate which of the following soil restoration criteria was used to address the requirements in Section 5.1.6("Soil Restoration") of the Design Manual (2010 version).
 - All disturbed areas will be restored in accordance with the Soil Restoration requirements in Table 5.3 of the Design Manual (see page 5-22).
 - O Compacted areas were considered as impervious cover when calculating the **WQv Required**, and the compacted areas were assigned a post-construction Hydrologic Soil Group (HSG) designation that is one level less permeable than existing conditions for the hydrology analysis.
- 28. Provide the total Water Quality Volume (WQv) required for this project (based on final site plan/layout).

Total WQv Required

0 . 6 7 9 acre-feet

29. Identify the RR techniques (Area Reduction), RR techniques(Volume Reduction) and Standard SMPs with RRv Capacity in Table 1 (See Page 9) that were used to reduce the Total WQv Required(#28).

Also, provide in Table 1 the total impervious area that contributes runoff to each technique/practice selected. For the Area Reduction Techniques, provide the total contributing area (includes pervious area) and, if applicable, the total impervious area that contributes runoff to the technique/practice.

Note: Redevelopment projects shall use Tables 1 and 2 to identify the SMPs used to treat and/or reduce the WQv required. If runoff reduction techniques will not be used to reduce the required WQv, skip to question 33a after identifying the SMPs.

Table 1 - Runoff Reduction (RR) Techniques and Standard Stormwater Management Practices (SMPs)

	Total Contributing		Total	Cor	ıtr	ibut	.ıng
RR Techniques (Area Reduction)	Area (acres)	Im	pervi	ous	Ar	ea(a	cre
O Conservation of Natural Areas (RR-1)		and/or	-				
O Sheetflow to Riparian Buffers/Filters Strips (RR-2)		and/or					
○ Tree Planting/Tree Pit (RR-3)		and/or			-		
O Disconnection of Rooftop Runoff (RR-4)		and/or	:		•		
R Techniques (Volume Reduction)							
○ Vegetated Swale (RR-5) ······	• • • • • • • • • • • • • • • • • • • •	• • • • •			-		
○ Rain Garden (RR-6) ······		• • • • •		\perp	. _	\perp	
○ Stormwater Planter (RR-7)		• • • • •			- _		
○ Rain Barrel/Cistern (RR-8)	• • • • • • • • • • • • • • • • • • • •				- _		
O Porous Pavement (RR-9)	• • • • • • • • • • • • • • • • • • • •						
○ Green Roof (RR-10)		• • • • •			. _		
tandard SMPs with RRv Capacity					. —		
O Infiltration Trench (I-1) ······	• • • • • • • • • • • • • • • • • • • •				- _		
● Infiltration Basin (I-2) ······				5	. 8	3 4	
Opry Well (I-3)							
Underground Infiltration System (I-4)							
O Bioretention (F-5) ·······							
Ory Swale (0-1)							
3 = 2, 3 = 3, 3 = 7,			,				
tandard SMPs							
○ Micropool Extended Detention (P-1)							
○ Wet Pond (P-2) · · · · · · · · · · · · · · · · · · ·							
O Wet Extended Detention (P-3) ······							
O Multiple Pond System (P-4)							
O Pocket Pond (P-5) ······							
○ Surface Sand Filter (F-1) ······				$\forall \exists$			
					-		
O Underground Sand Filter (F-2) ······				+	-	+	
O Perimeter Sand Filter (F-3) ······				+-	-	+	
Organic Filter (F-4)				+	-		
○ Shallow Wetland (W-1)				+	-	+	
○ Extended Detention Wetland (W-2)					-	+	
O Pond/Wetland System (W-3)	• • • • • • • • • • • • • • • • • • • •	• • • • •		_	-	+	
O Pocket Wetland (W-4)	• • • • • • • • • • • • • • • • • • • •	• • • • •			• -	+	
○ Wet Swale (0-2)	• • • • • • • • • • • • • • • • • •				-		

Table 2 -Alternative SMPs (DO NOT INCLUDE PRACTICES BEING USED FOR PRETREATMENT ONLY) Total Contributing Alternative SMP Impervious Area(acres) ○ Hydrodynamic \bigcirc Wet Vault O Media Filter Other Provide the name and manufacturer of the Alternative SMPs (i.e. proprietary practice(s)) being used for WQv treatment. Name Manufacturer Note: Redevelopment projects which do not use RR techniques, shall use questions 28, 29, 33 and 33a to provide SMPs used, total WQv required and total WQv provided for the project. 30. Indicate the Total RRv provided by the RR techniques (Area/Volume Reduction) and Standard SMPs with RRv capacity identified in question 29. Total RRv provided 0 1 1 acre-feet 31. Is the Total RRv provided (#30) greater than or equal to the total WQv required (#28). O Yes No If Yes, go to question 36. If No, go to question 32. 32. Provide the Minimum RRv required based on HSG. [Minimum RRv Required = (P)(0.95)(Ai)/12, Ai=(S)(Aic)] Minimum RRv Required 0 acre-feet 32a. Is the Total RRv provided (#30) greater than or equal to the O No Yes Minimum RRv Required (#32)? If Yes, go to question 33. Note: Use the space provided in question #39 to summarize the specific site limitations and justification for not reducing 100% of WQv required (#28). A detailed evaluation of the specific site limitations and justification for not reducing 100% of the WQv required (#28) must also be included in the If No, sizing criteria has not been met, so NOI can not be processed. SWPPP preparer must modify design to meet sizing criteria.

Identify the Standard SMPs in Table 1 and, if applicable, the Alternative SMPs in Table 2 that were used to treat the remaining total WQv(=Total WQv Required in 28 - Total RRv Provided in 30).

Also, provide in Table 1 and 2 the total impervious area that contributes runoff to each practice selected.

Note: Use Tables 1 and 2 to identify the SMPs used on Redevelopment projects.

33a. Indicate the Total WQv provided (i.e. WQv treated) by the SMPs identified in question #33 and Standard SMPs with RRv Capacity identified in question 29.

WQv Provided 1 acre-feet 8 9

Note: For the standard SMPs with RRv capacity, the WQv provided by each practice = the WQv calculated using the contributing drainage area to the practice - RRv provided by the practice. (See Table 3.5 in Design Manual)

34. Provide the sum of the Total RRv provided (#30) and the WQv provided (#33a).

	1		5	0	2
--	---	--	---	---	---

Is the sum of the RRv provided (#30) and the WQv provided 35. (#33a) greater than or equal to the total WQv required (#28)? Yes O No

If Yes, go to question 36. If No, sizing criteria has not been met, so NOI can not be processed. SWPPP preparer must modify design to meet sizing criteria.

Provide the total Channel Protection Storage Volume (CPv) required and 36. provided or select waiver (36a), if applicable.

CPv Required					CPv Provided						
	0.	7	8	3 acre-feet		1		3	9	4	acre-feet

36a. The need to provide channel protection has been waived because:

- O Site discharges directly to tidal waters or a fifth order or larger stream.
- O Reduction of the total CPv is achieved on site through runoff reduction techniques or infiltration systems.
- 37. Provide the Overbank Flood (Qp) and Extreme Flood (Qf) control criteria or select waiver (37a), if applicable.

Total Overbank Flood Control Criteria (Qp)

Pre-Development Post-development 5 1 CFS Total Extreme Flood Control Criteria (Qf)

Pre-Development Post-development 2 9 1 | 3 CFS CFS

	Site discharges directly to tidal waters or a fifth order or larger stream.Downstream analysis reveals that the Qp and Qf controls are not required
38.	Has a long term Operation and Maintenance Plan for the post-construction stormwater management practice(s) been developed? If Yes, Identify the entity responsible for the long term Operation and Maintenance Suresky & Sons
39.	Use this space to summarize the specific site limitations and justification for not reducing 100% of WQv required(#28). (See question 32a) This space can also be used for other pertinent project information.

37a. The need to meet the Qp and Qf criteria has been waived because:

5396372690

40.	Identify other DEC permits, existing and new, that are required for this project/facility.							
	O Air Pollution Control							
	○ Coastal Erosion							
	O Hazardous Waste							
	○ Long Island Wells							
	○ Mined Land Reclamation							
	○ Solid Waste							
	O Navigable Waters Protection / Article 15							
	○ Water Quality Certificate							
	○ Dam Safety							
	○ Water Supply							
	○ Freshwater Wetlands/Article 24							
	○ Tidal Wetlands							
	○ Wild, Scenic and Recreational Rivers							
	○ Stream Bed or Bank Protection / Article 15							
	○ Endangered or Threatened Species(Incidental Take Permit)							
	○ Individual SPDES							
	O SPDES Multi-Sector GP N Y R							
	Other							
	• None							
41.	Does this project require a US Army Corps of Engineers Wetland Permit? If Yes, Indicate Size of Impact. O Yes No							
42.	Is this project subject to the requirements of a regulated, traditional land use control MS4? (If No, skip question 43)							
43.	Has the "MS4 SWPPP Acceptance" form been signed by the principal executive officer or ranking elected official and submitted along with this NOI?							
44.	If this NOI is being submitted for the purpose of continuing or transferring							

0 5 9

N Y R 1 1 A

coverage under a general permit for stormwater runoff from construction

activities, please indicate the former SPDES number assigned.

Owner/Operator Certification

I have read or been advised of the permit conditions and believe that I understand them. I also understand that, under the terms of the permit, there may be reporting requirements. I hereby certify that this document and the corresponding documents were prepared under my direction or supervision. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. I further understand that coverage under the general permit will be identified in the acknowledgment that I will receive as a result of submitting this NOI and can be as long as sixty (60) business days as provided for in the general permit. I also understand that, by submitting this NOI, I am acknowledging that the SWPPP has been developed and will be implemented as the first element of construction, and agreeing to comply with all the terms and conditions of the general permit for which this NOI is being submitted.

Print First Name	MI
Joseph	
Print Last Name	
Suresky	
Owner/Operator Signature	
	Date
	1 0 / 0 6 / 2 0 1 7

New York State Department of Environmental Conservation Division of Water 625 Broadway, 4th Floor Albany, New York 12233-3505

MS4 Stormwater Pollution Prevention Plan (SWPPP) Acceptance Form

for

Construction Activities Seeking Authorization Under SPDES General Permit *(NOTE: Attach Completed Form to Notice Of Intent and Submit to Address Above)

I. Project Owner/Operator Information

1. Owner/Operator Name: Suresky and Sons

2. Contact Person: Joseph Suresky

3. Street Address: 2 Hatfield Lane

4. City/State/Zip: Goshen, NY 10924

II. Project Site Information

5. Project/Site Name: Suresky and Sons Chester

6. Street Address: 39 Elkay Drive

7. City/State/Zip: Town of Chester, NY 10918

III. Stormwater Pollution Prevention Plan (SWPPP) Review and Acceptance Information

8. SWPPP Reviewed by: Alfred A. Fusco, Jr., P.E.

9. Title/Position: Town Engineer

10. Date Final SWPPP Reviewed and Accepted:

IV. Regulated MS4 Information

11. Name of MS4: Town of Chester

12. MS4 SPDES Permit Identification Number: NYR20A 126

13. Contact Person: Alfred A. Fusco, Jr., P.E.

14. Street Address: 233 East Main Street

15. City/State/Zip: Middletown, New York 10940

16. Telephone Number: 845-344-5863

(NYS DEC - MS4 SWPPP Acceptance Form - January 2010)

MS4 SWPPP Acceptance Form - continued						
V. Certification Statement - MS4 Official (principal executive officer or ranking elected official) or Duly Authorized Representative						
I hereby certify that the final Stormwater Pollution Prevention Plan (SWPPP) for the construction project identified in question 5 has been reviewed and meets the substantive requirements in the SPDES General Permit For Stormwater Discharges from Municipal Separate Storm Sewer Systems (MS4s). Note: The MS4, through the acceptance of the SWPPP, assumes no responsibility for the accuracy and adequacy of the design included in the SWPPP. In addition, review and acceptance of the SWPPP by the MS4 does not relieve the owner/operator or their SWPPP preparer of responsibility or liability for errors or omissions in the plan.						
Printed Name:						
Title/Position:						
Signature:						
Date:						
VI. Additional Information						

APPENDIX 12 CONSTRUCTION WASTE MANAGEMENT & SPILL PREVENTION PLANS

CONSTRUCTION WASTE MANAGEMENT & SPILL PREVENTION PLAN

Early in the construction activities, land clearing materials will be collected and recycled either off site or re-used on site as erosion control materials. During early phase construction activities, cardboard, concrete, metal, wood and general trash collection dumpsters will be on site for collection and processing. As the project progresses, concrete dumpsters will be changed over to drywall collection, site clearing dumpsters will be changed over to finish material containers, etc. Typically, (4) open top containers will be on site for the duration of the project. General waste and cardboard/paper containers will be on site for the duration of the project. The contractor will be responsible for organizing and placing containers on site and timely removal/replacement when containers are filled to capacity. As necessary, the contractor will provide areas of collection or hoppers for subcontractors to utilize for intermediate storage of construction and demolition (CD) materials. All containers will be clearly identified with signage indicating stored materials.

Those CD materials generated on this project will be salvaged and re-processed as listed. The contractor will research available processing sources specific to the job site and make all trades aware of project qualifying CD recyclable materials as follows:

Brick: Materials will be stored on site and palletized by processor who will resell as product.

<u>Cardboard:</u> Materials will be separated on the jobsite and stored within dedicated on-site dumpster and delivered loose to processor. Processor will bale materials and deliver/resell to end market users.

<u>Concrete</u>: Scrap and loose materials will either be crushed on site and used for aggregate or stored within dedicated on-site dumpster and delivered to processor. Processor will reuse or resell materials as clean fill back or crush and use for aggregate.

<u>Metals:</u> Materials will be sorted and stored within dedicated on-site dumpster and delivered to processor. Processor will sell materials to metal recyclers (steel, aluminum, brass, copper, lead, stainless).

Stone and Granite: Materials will be collected on site in piles or containers and processor will palletize and haul materials. Processor will re-sell as product or crushed and use as aggregate.

<u>Plastic</u>, <u>paper goods</u>, <u>and aluminum cans</u>: <u>Materials will be collected on job site within construction trailers</u>, <u>cantina areas</u>, etc. and stored in on-site trailers. <u>Materials will be hauled/recycled by processor</u>.

<u>Drywall:</u> Waste materials will be sorted and collected in dedicated on-site containers or materials will be ground on site and used as an erosion control product. Hauled materials to processor will be processed as a soil amendment or used in alternate fuel mixture.

<u>Wood or Lumber:</u> Materials will be sorted and stored on-site within dedicated on-site containers and either resold as retail lumber by processor or ground and mixed with commercial land

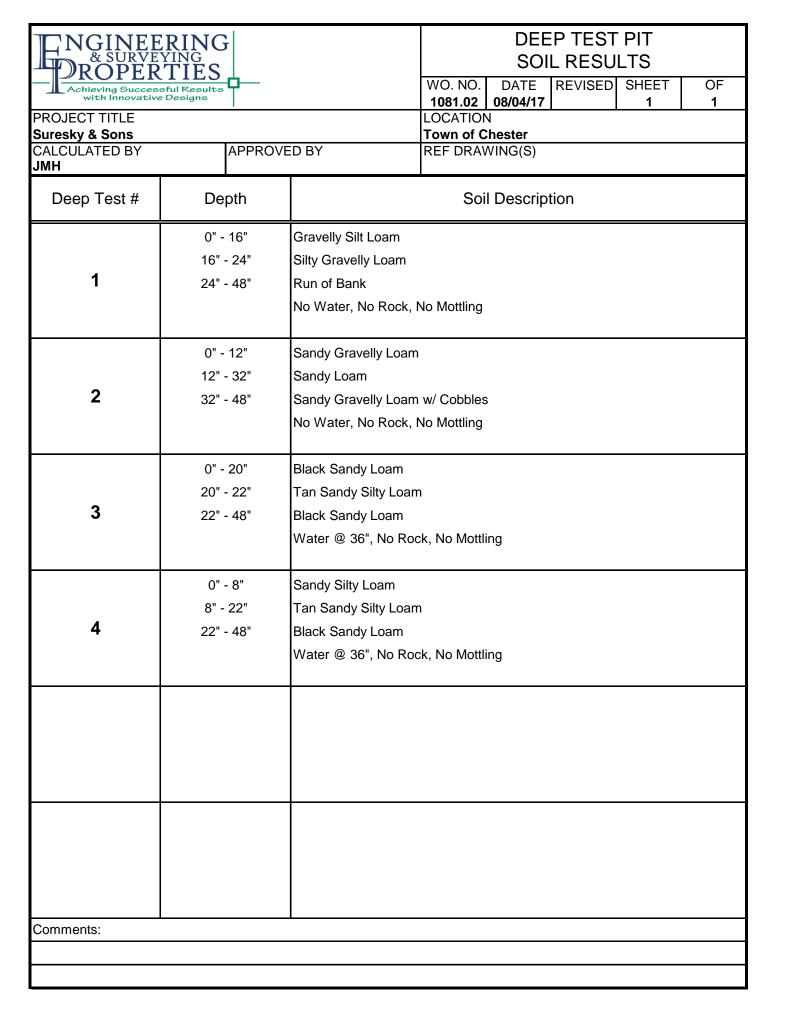
clearing and/or approved materials for erosion control applications. Lumber will need to be clean, no paint or other wood treatment.

<u>Land Clearing Debris:</u> Woody materials (stumps, large limbs) will be ground on-site and used for soil erosion control products or hauled to processor to be ground as re-sold as erosion control products.

<u>Roofing Shingles:</u> Materials will be stored on site and processed as temporary road base, mixed into hot asphalt mix or used as alternate fuel blend or hauled offsite via appropriate methods to an authorized disposal/recycling facility.

<u>Fuel Tanks:</u> On site storage of fuel chemicals shall be equipped with a spill kit. The contractor must provide secondary containment for storing any hazardous chemicals on site. <u>Equipment storage:</u> All equipment stored on site shall be inspected daily by the contractor for any oil or lubricant spills or leaks. Any leaks shall be repaired immediately. In addition all equipment must be closely inspected prior to working in the Town R.O.W.

<u>Spill Response:</u> The contractor shall clean all spills immediately and shall report all spills to the New York State Department of Environmental Conservation.


This Plan will be displayed in the construction jobsite trailer at all times.

APPENDIX 13 INFILTRATION PONDS SOILS TESTING RESULTS

wing Name: Z:\1081.02 — Suresky & Sons\Amended Site Plan.dwg Date Printed: Oct 09, 2017, 8:42am

ENC	SINEER & SURVEYI OPERT	UNG NG TFC		INFILTRATION TEST RESULTS						
Achie	ving Successfu th Innovative De	I Results esigns	_	WO. NO. 1081.02	DATE	REVISED	SHEET	OF 1		
PROJECT TI		<u> </u>		LOCATION	08/04/17		1	1		
Suresky & Sons Town of Chester										
CALCULATED BY APPROVED BY REF DRAWING(S) JMH										
Test Hole Number	Test Hole Depth	Test Hole Diameter	Time	(Wate)	Infiltration drop in inch	Average Drop				
Number	Бериі	Diameter	Start:	9:28 AM	9:41 AM	10:18 AM	10:40 AM	ыор		
1	1.5'	6"	Finish:	9:40 AM	10:18 AM	10:40 AM	11:06 AM	24.0		
			Drop:	24.00	24.00	24.00	24.00			
Comments:										
			Start:	9:38 AM	10:20 AM	10:42 AM	11:02 AM			
2	1.5'	6"	Finish:	10:20 AM	10:42 AM	11:02 AM	11:38 AM	24.0		
			Drop:	24.00	24.00	24.00	24.00			
Comments:										
			Start:	10:09 AM	10:28 AM	10:50 AM	11:06 AM			
3	1.5'	6"	Finish:	10:28 AM	10:50 AM	11:06 AM	11:13 AM	24.0		
			Drop:	24.00	24.00	24.00	24.00			
Comments:										
			Start:	10:07 AM	10:26 AM	10:52 AM	11:05 AM			
4	1.5'	6"	Finish:	10:26 AM	10:52 AM	11:05 AM	11:17 AM	24.0		
			Drop:	24.00	24.00	24.00	24.00			
Comments:										
			Start:							
			Finish:							
			Drop:							
Comments:	·									
			Start:							
			Finish:							
			Drop:							
Comments:										
			Start:							
			Finish:							
			Drop:							
Comments:										
			Start:							
			Finish:							
			Drop:							
Comments:	·									

